000862550 001__ 862550
000862550 005__ 20210130001445.0
000862550 0247_ $$2doi$$a10.1103/PhysRevX.9.011055
000862550 0247_ $$2Handle$$a2128/22147
000862550 0247_ $$2WOS$$aWOS:000462929900001
000862550 0247_ $$2altmetric$$aaltmetric:57966796
000862550 037__ $$aFZJ-2019-02844
000862550 082__ $$a530
000862550 1001_ $$0P:(DE-HGF)0$$aJolie, Wouter$$b0$$eCorresponding author
000862550 245__ $$aTomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS 2 Mirror-Twin Boundaries
000862550 260__ $$aCollege Park, Md.$$bAPS$$c2019
000862550 3367_ $$2DRIVER$$aarticle
000862550 3367_ $$2DataCite$$aOutput Types/Journal article
000862550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556788520_30916
000862550 3367_ $$2BibTeX$$aARTICLE
000862550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862550 3367_ $$00$$2EndNote$$aJournal Article
000862550 520__ $$aTwo- or three-dimensional metals are usually well described by weakly interacting, fermionic quasiparticles. This concept breaks down in one dimension due to strong Coulomb interactions. There, low-energy electronic excitations are expected to be bosonic collective modes, which fractionalize into independent spin- and charge-density waves. Experimental research on one-dimensional metals is still hampered by their difficult realization, their limited accessibility to measurements, and by competing or obscuring effects such as Peierls distortions or zero bias anomalies. Here we overcome these difficulties by constructing a well-isolated, one-dimensional metal of finite length present in MoS2 mirror-twin boundaries. Using scanning tunneling spectroscopy we measure the single-particle density of the interacting electron system as a function of energy and position in the 1D box. Comparison to theoretical modeling provides unambiguous evidence that we are observing spin-charge separation in real space.
000862550 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000862550 588__ $$aDataset connected to CrossRef
000862550 7001_ $$0P:(DE-HGF)0$$aMurray, Clifford$$b1
000862550 7001_ $$0P:(DE-HGF)0$$aWeiß, Philipp S.$$b2
000862550 7001_ $$0P:(DE-Juel1)159246$$aHall, Joshua$$b3
000862550 7001_ $$0P:(DE-HGF)0$$aPortner, Fabian$$b4
000862550 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b5$$ufzj
000862550 7001_ $$0P:(DE-HGF)0$$aKrasheninnikov, Arkady V.$$b6
000862550 7001_ $$0P:(DE-HGF)0$$aBusse, Carsten$$b7
000862550 7001_ $$0P:(DE-HGF)0$$aKomsa, Hannu-Pekka$$b8
000862550 7001_ $$0P:(DE-HGF)0$$aRosch, Achim$$b9
000862550 7001_ $$0P:(DE-HGF)0$$aMichely, Thomas$$b10
000862550 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.9.011055$$gVol. 9, no. 1, p. 011055$$n1$$p011055$$tPhysical review / X Expanding access X$$v9$$x2160-3308$$y2019
000862550 8564_ $$uhttps://juser.fz-juelich.de/record/862550/files/PhysRevX.9.011055.pdf$$yOpenAccess
000862550 8564_ $$uhttps://juser.fz-juelich.de/record/862550/files/PhysRevX.9.011055.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862550 909CO $$ooai:juser.fz-juelich.de:862550$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b5$$kFZJ
000862550 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000862550 9141_ $$y2019
000862550 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862550 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862550 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2017
000862550 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2017
000862550 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862550 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862550 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862550 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862550 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862550 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862550 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862550 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000862550 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000862550 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000862550 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000862550 980__ $$ajournal
000862550 980__ $$aVDB
000862550 980__ $$aUNRESTRICTED
000862550 980__ $$aI:(DE-Juel1)IAS-1-20090406
000862550 980__ $$aI:(DE-Juel1)PGI-1-20110106
000862550 980__ $$aI:(DE-82)080009_20140620
000862550 980__ $$aI:(DE-82)080012_20140620
000862550 9801_ $$aFullTexts