Home > Publications database > Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS 2 Mirror-Twin Boundaries > print |
001 | 862550 | ||
005 | 20210130001445.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevX.9.011055 |2 doi |
024 | 7 | _ | |a 2128/22147 |2 Handle |
024 | 7 | _ | |a WOS:000462929900001 |2 WOS |
024 | 7 | _ | |a altmetric:57966796 |2 altmetric |
037 | _ | _ | |a FZJ-2019-02844 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Jolie, Wouter |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS 2 Mirror-Twin Boundaries |
260 | _ | _ | |a College Park, Md. |c 2019 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1556788520_30916 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Two- or three-dimensional metals are usually well described by weakly interacting, fermionic quasiparticles. This concept breaks down in one dimension due to strong Coulomb interactions. There, low-energy electronic excitations are expected to be bosonic collective modes, which fractionalize into independent spin- and charge-density waves. Experimental research on one-dimensional metals is still hampered by their difficult realization, their limited accessibility to measurements, and by competing or obscuring effects such as Peierls distortions or zero bias anomalies. Here we overcome these difficulties by constructing a well-isolated, one-dimensional metal of finite length present in MoS2 mirror-twin boundaries. Using scanning tunneling spectroscopy we measure the single-particle density of the interacting electron system as a function of energy and position in the 1D box. Comparison to theoretical modeling provides unambiguous evidence that we are observing spin-charge separation in real space. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Murray, Clifford |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Weiß, Philipp S. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hall, Joshua |0 P:(DE-Juel1)159246 |b 3 |
700 | 1 | _ | |a Portner, Fabian |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 5 |u fzj |
700 | 1 | _ | |a Krasheninnikov, Arkady V. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Busse, Carsten |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Komsa, Hannu-Pekka |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Rosch, Achim |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Michely, Thomas |0 P:(DE-HGF)0 |b 10 |
773 | _ | _ | |a 10.1103/PhysRevX.9.011055 |g Vol. 9, no. 1, p. 011055 |0 PERI:(DE-600)2622565-7 |n 1 |p 011055 |t Physical review / X Expanding access X |v 9 |y 2019 |x 2160-3308 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/862550/files/PhysRevX.9.011055.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/862550/files/PhysRevX.9.011055.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:862550 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130513 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV X : 2017 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b PHYS REV X : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|