000862554 001__ 862554
000862554 005__ 20210130001448.0
000862554 0247_ $$2doi$$a10.1016/j.cell.2019.01.030
000862554 0247_ $$2ISSN$$a0092-8674
000862554 0247_ $$2ISSN$$a1097-4172
000862554 0247_ $$2pmid$$apmid:30773316
000862554 0247_ $$2WOS$$aWOS:000459257500010
000862554 0247_ $$2altmetric$$aaltmetric:55472956
000862554 037__ $$aFZJ-2019-02848
000862554 082__ $$a610
000862554 1001_ $$0P:(DE-HGF)0$$aHoros, Rastislav$$b0$$eCorresponding author
000862554 245__ $$aThe Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy
000862554 260__ $$aNew York, NY$$bElsevier$$c2019
000862554 3367_ $$2DRIVER$$aarticle
000862554 3367_ $$2DataCite$$aOutput Types/Journal article
000862554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573456348_25513
000862554 3367_ $$2BibTeX$$aARTICLE
000862554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862554 3367_ $$00$$2EndNote$$aJournal Article
000862554 520__ $$aVault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.
000862554 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000862554 588__ $$aDataset connected to CrossRef
000862554 7001_ $$0P:(DE-HGF)0$$aBüscher, Magdalena$$b1
000862554 7001_ $$0P:(DE-HGF)0$$aKleinendorst, Rozemarijn$$b2
000862554 7001_ $$0P:(DE-HGF)0$$aAlleaume, Anne-Marie$$b3
000862554 7001_ $$0P:(DE-HGF)0$$aTarafder, Abul K.$$b4
000862554 7001_ $$0P:(DE-HGF)0$$aSchwarzl, Thomas$$b5
000862554 7001_ $$0P:(DE-HGF)0$$aDziuba, Dmytro$$b6
000862554 7001_ $$0P:(DE-HGF)0$$aTischer, Christian$$b7
000862554 7001_ $$0P:(DE-HGF)0$$aZielonka, Elisabeth M.$$b8
000862554 7001_ $$0P:(DE-HGF)0$$aAdak, Asli$$b9
000862554 7001_ $$0P:(DE-HGF)0$$aCastello, Alfredo$$b10
000862554 7001_ $$0P:(DE-HGF)0$$aHuber, Wolfgang$$b11
000862554 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b12$$ufzj
000862554 7001_ $$0P:(DE-HGF)0$$aHentze, Matthias W.$$b13
000862554 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2019.01.030$$gVol. 176, no. 5, p. 1054 - 1067.e12$$n5$$p1054 - 1067.e12$$tCell$$v176$$x0092-8674$$y2019
000862554 8564_ $$uhttps://juser.fz-juelich.de/record/862554/files/Horos%20et%20al._Cell_2019%282%29.pdf$$yRestricted
000862554 8564_ $$uhttps://juser.fz-juelich.de/record/862554/files/Horos%20et%20al._Cell_2019%282%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862554 909CO $$ooai:juser.fz-juelich.de:862554$$pVDB
000862554 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-HGF)0$$aEuropean Molecular Biology Laboratory$$b0$$kEMBL
000862554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b12$$kFZJ
000862554 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-HGF)0$$aEuropean Molecular Biology Laboratory$$b13$$kEMBL
000862554 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000862554 9141_ $$y2019
000862554 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862554 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2017
000862554 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862554 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862554 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862554 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862554 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862554 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862554 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bCELL : 2017
000862554 920__ $$lyes
000862554 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000862554 980__ $$ajournal
000862554 980__ $$aVDB
000862554 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000862554 980__ $$aUNRESTRICTED