001     862554
005     20210130001448.0
024 7 _ |a 10.1016/j.cell.2019.01.030
|2 doi
024 7 _ |a 0092-8674
|2 ISSN
024 7 _ |a 1097-4172
|2 ISSN
024 7 _ |a pmid:30773316
|2 pmid
024 7 _ |a WOS:000459257500010
|2 WOS
024 7 _ |a altmetric:55472956
|2 altmetric
037 _ _ |a FZJ-2019-02848
082 _ _ |a 610
100 1 _ |a Horos, Rastislav
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy
260 _ _ |a New York, NY
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573456348_25513
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Büscher, Magdalena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kleinendorst, Rozemarijn
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alleaume, Anne-Marie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tarafder, Abul K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schwarzl, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dziuba, Dmytro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tischer, Christian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zielonka, Elisabeth M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Adak, Asli
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Castello, Alfredo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Huber, Wolfgang
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 12
|u fzj
700 1 _ |a Hentze, Matthias W.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1016/j.cell.2019.01.030
|g Vol. 176, no. 5, p. 1054 - 1067.e12
|0 PERI:(DE-600)2001951-8
|n 5
|p 1054 - 1067.e12
|t Cell
|v 176
|y 2019
|x 0092-8674
856 4 _ |u https://juser.fz-juelich.de/record/862554/files/Horos%20et%20al._Cell_2019%282%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862554/files/Horos%20et%20al._Cell_2019%282%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:862554
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173949
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 13
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b CELL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21