000862557 001__ 862557
000862557 005__ 20220930130211.0
000862557 0247_ $$2doi$$a10.1016/j.agrformet.2019.04.009
000862557 0247_ $$2altmetric$$aaltmetric:59778936
000862557 0247_ $$2WOS$$aWOS:000471356600007
000862557 0247_ $$2Handle$$a2128/23149
000862557 037__ $$aFZJ-2019-02851
000862557 041__ $$aEnglish
000862557 082__ $$a550
000862557 1001_ $$0P:(DE-Juel1)166467$$aNey, Patrizia$$b0$$eCorresponding author$$ufzj
000862557 245__ $$aCO$_2$ fluxes before and after partial deforestation of a Central European spruce forest
000862557 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000862557 3367_ $$2DRIVER$$aarticle
000862557 3367_ $$2DataCite$$aOutput Types/Journal article
000862557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557413256_25693
000862557 3367_ $$2BibTeX$$aARTICLE
000862557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862557 3367_ $$00$$2EndNote$$aJournal Article
000862557 520__ $$aA seven year CO$_2$-flux dataset measured in a 70 year old spruce monoculture is presented, of which 22% was deforested three years after the start of the measurements to accelerate regeneration towards natural deciduous vegetation. An eddy covariance (EC) system, mounted on top of a tower within the spruce forest, continuously sampled fluxes of momentum, sensible heat, latent heat and CO$_2$. After clear-cutting, a second EC station with an identical set of instruments was installed inside the deforested area. In total, we examined an EC dataset including three years before (forest) and four years after partial deforestation (forest and deforested). Full time series and annual carbon budgets of the net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco) were calculated for both EC sites. Soil respiration was measured with manual chambers on average every month after the deforestation at 75 measurement points in the forest and deforested area. Annual sums of NEE measured above the forest indicated a strong carbon sink of -660 (-535) g C m$^{-2}$ y$^{-1}$ with small interannual variability ±78 (72) g C m$^{-2}$ y$^{-1}$ (values in brackets including correction for self-heating of the open-path gas analyzer). In the first year after partial deforestation, regrowth on the clearcut consisted mainly of grasses, with beginning of the second year shrubs and young trees became increasingly important. The regrowth of vegetation is reflected in the annual sums of NEE, which decreased from a carbon source of 521 (548) g C m$^{-2}$ y$^{-1}$ towards 82 (236) g C m$^{-2}$ y$^{-1}$ over the past four years, due to an increase in the magnitude of GPP from 385 (447) to 892 (1036) g C m$^{-2}$ y$^{-1}$.
000862557 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862557 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x1
000862557 536__ $$0G:(DE-HGF)TERENO-2008$$aTERENO - Terrestrial Environmental Observatories (TERENO-2008)$$cTERENO-2008$$fTERENO-2008$$x2
000862557 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
000862557 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b1$$ufzj
000862557 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2$$ufzj
000862557 7001_ $$0P:(DE-HGF)0$$aBernd, Diekkrüger$$b3
000862557 7001_ $$0P:(DE-HGF)0$$aDrüe, Clemens$$b4
000862557 7001_ $$0P:(DE-Juel1)129450$$aEsser, Odilia$$b5$$ufzj
000862557 7001_ $$0P:(DE-HGF)0$$aHeinemann, Günther$$b6
000862557 7001_ $$0P:(DE-HGF)0$$aKlosterhalfen, Anne$$b7
000862557 7001_ $$0P:(DE-HGF)0$$aPick, Katharina$$b8
000862557 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b9$$ufzj
000862557 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b10$$ufzj
000862557 7001_ $$0P:(DE-HGF)0$$aValler, Veronika$$b11
000862557 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b12$$ufzj
000862557 773__ $$0PERI:(DE-600)2012165-9$$a10.1016/j.agrformet.2019.04.009$$p61-74$$tAgricultural and forest meteorology$$v274$$x0168-1923$$y2019
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/W1505208.pdf
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/final%20puplished%20version.pdf$$yRestricted
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/final%20puplished%20version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/W1505208.pdf?subformat=pdfa$$xpdfa
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/AGRFORMET_D_18_00288R2.pdf$$yPublished on 2019-04-30. Available in OpenAccess from 2021-04-30.
000862557 8564_ $$uhttps://juser.fz-juelich.de/record/862557/files/AGRFORMET_D_18_00288R2.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-30. Available in OpenAccess from 2021-04-30.
000862557 8767_ $$8W1505208$$92019-04-26$$d2019-04-29$$eColour charges$$jZahlung erfolgt
000862557 909CO $$ooai:juser.fz-juelich.de:862557$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166467$$aForschungszentrum Jülich$$b0$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b1$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b2$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129450$$aForschungszentrum Jülich$$b5$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b9$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b10$$kFZJ
000862557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b12$$kFZJ
000862557 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862557 9141_ $$y2019
000862557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862557 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862557 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862557 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGR FOREST METEOROL : 2017
000862557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862557 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862557 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862557 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862557 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862557 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000862557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862557 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862557 920__ $$lyes
000862557 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862557 980__ $$ajournal
000862557 980__ $$aVDB
000862557 980__ $$aUNRESTRICTED
000862557 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862557 980__ $$aAPC
000862557 9801_ $$aAPC
000862557 9801_ $$aFullTexts