000862583 001__ 862583
000862583 005__ 20240711113745.0
000862583 0247_ $$2doi$$a10.1016/j.nme.2019.01.015
000862583 0247_ $$2Handle$$a2128/22156
000862583 0247_ $$2WOS$$aWOS:000460107500056
000862583 037__ $$aFZJ-2019-02852
000862583 082__ $$a624
000862583 1001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b0$$eCorresponding author
000862583 245__ $$aBeryllium global erosion and deposition at JET-ILW simulated with ERO2.0
000862583 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000862583 3367_ $$2DRIVER$$aarticle
000862583 3367_ $$2DataCite$$aOutput Types/Journal article
000862583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605868631_3626
000862583 3367_ $$2BibTeX$$aARTICLE
000862583 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862583 3367_ $$00$$2EndNote$$aJournal Article
000862583 520__ $$aThe recently developed Monte-Carlo code ERO2.0 is applied to the modelling of limited and diverted discharges at JET with the ITER-like wall (ILW). The global beryllium (Be) erosion and deposition is simulated and compared to experimental results from passive spectroscopy. For the limiter configuration, it is demonstrated that Be self-sputtering is an important contributor (at least 35%) to the Be erosion. Taking this contribution into account, the ERO2.0 modelling confirms previous evidence that high deuterium (D) surface concentrations of up to  ∼ 50% atomic fraction provide a reasonable estimate of Be erosion in plasma-wetted areas. For the divertor configuration, it is shown that drifts can have a high impact on the scrape-off layer plasma flows, which in turn affect global Be transport by entrainment and lead to increased migration into the inner divertor. The modelling of the effective erosion yield for different operational phases (ohmic, L- and H-mode) agrees with experimental values within a factor of two, and confirms that the effective erosion yield decreases with increasing heating power and confinement.
000862583 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000862583 536__ $$0G:(DE-Juel1)jiek43_20170501$$a3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices (jiek43_20170501)$$cjiek43_20170501$$f3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices$$x1
000862583 588__ $$aDataset connected to CrossRef
000862583 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b1
000862583 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b2
000862583 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b3
000862583 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b4
000862583 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b5
000862583 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b6
000862583 7001_ $$0P:(DE-HGF)0$$aWiddowson, A.$$b7
000862583 7001_ $$0P:(DE-HGF)0$$aAirila, M.$$b8
000862583 7001_ $$0P:(DE-Juel1)171509$$aEksaeva, A.$$b9
000862583 7001_ $$0P:(DE-Juel1)171707$$aBorodkina, I.$$b10
000862583 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b11
000862583 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.01.015$$gVol. 18, p. 331 - 338$$p331 - 338$$tNuclear materials and energy$$v18$$x2352-1791$$y2019
000862583 8564_ $$uhttps://juser.fz-juelich.de/record/862583/files/1-s2.0-S2352179118300759-main.pdf$$yOpenAccess
000862583 8564_ $$uhttps://juser.fz-juelich.de/record/862583/files/1-s2.0-S2352179118300759-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862583 909CO $$ooai:juser.fz-juelich.de:862583$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b0$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b1$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b2$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b3$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b4$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b5$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b6$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171509$$aForschungszentrum Jülich$$b9$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171707$$aForschungszentrum Jülich$$b10$$kFZJ
000862583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b11$$kFZJ
000862583 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000862583 9141_ $$y2019
000862583 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862583 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862583 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862583 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000862583 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862583 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862583 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862583 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862583 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862583 920__ $$lyes
000862583 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000862583 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000862583 9801_ $$aFullTexts
000862583 980__ $$ajournal
000862583 980__ $$aVDB
000862583 980__ $$aI:(DE-Juel1)IEK-4-20101013
000862583 980__ $$aI:(DE-82)080012_20140620
000862583 980__ $$aUNRESTRICTED
000862583 981__ $$aI:(DE-Juel1)IFN-1-20101013