000862600 001__ 862600
000862600 005__ 20220930130211.0
000862600 0247_ $$2doi$$a10.1038/s41598-019-43077-x
000862600 0247_ $$2Handle$$a2128/22154
000862600 0247_ $$2pmid$$apmid:31036857
000862600 0247_ $$2WOS$$aWOS:000466127100033
000862600 037__ $$aFZJ-2019-02869
000862600 082__ $$a600
000862600 1001_ $$0P:(DE-Juel1)164358$$aDas, Shibananda$$b0
000862600 245__ $$aLocal stress and pressure in an inhomogeneous system of spherical active Brownian particles
000862600 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000862600 3367_ $$2DRIVER$$aarticle
000862600 3367_ $$2DataCite$$aOutput Types/Journal article
000862600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582032987_1128
000862600 3367_ $$2BibTeX$$aARTICLE
000862600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862600 3367_ $$00$$2EndNote$$aJournal Article
000862600 520__ $$aThe stress of a fluid on a confining wall is given by the mechanical wall forces, independent of the nature of the fluid being passive or active. At thermal equilibrium, an equation of state exists and stress is likewise obtained from intrinsic bulk properties; even more, stress can be calculated locally. Comparable local descriptions for active systems require a particular consideration of active forces. Here, we derive expressions for the stress exerted on a local volume of a systems of spherical active Brownian particles (ABPs). Using the virial theorem, we obtain two identical stress expressions, a stress due to momentum flux across a hypothetical plane, and a bulk stress inside of the local volume. In the first case, we obtain an active contribution to momentum transport in analogy to momentum transport in an underdamped passive system, and we introduce an active momentum. In the second case, a generally valid expression for the swim stress is derived. By simulations, we demonstrate that the local bulk stress is identical to the wall stress of a confined system for both, non-interacting ABPs as well as ABPs with excluded-volume interactions. This underlines the existence of an equation of state for a system of spherical ABPs. Most importantly, our calculations demonstrated that active stress is not a wall (boundary) effect, but is caused by momentum transport. We demonstrate that the derived stress expression permits the calculation of the local stress in inhomogeneous systems of ABPs.
000862600 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000862600 588__ $$aDataset connected to CrossRef
000862600 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1
000862600 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author
000862600 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-43077-x$$gVol. 9, no. 1, p. 6608$$n1$$p6608$$tScientific reports$$v9$$x2045-2322$$y2019
000862600 8564_ $$uhttps://juser.fz-juelich.de/record/862600/files/30037750000009061628INVOIC2676142293001.pdf
000862600 8564_ $$uhttps://juser.fz-juelich.de/record/862600/files/30037750000009061628INVOIC2676142293001.pdf?subformat=pdfa$$xpdfa
000862600 8564_ $$uhttps://juser.fz-juelich.de/record/862600/files/s41598-019-43077-x.pdf$$yOpenAccess
000862600 8564_ $$uhttps://juser.fz-juelich.de/record/862600/files/s41598-019-43077-x.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862600 8767_ $$82676142293$$92019-04-16$$d2019-05-09$$eAPC$$jZahlung erfolgt$$pSREP-18-31064B$$zFZJ-2019-02748
000862600 909CO $$ooai:juser.fz-juelich.de:862600$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164358$$aForschungszentrum Jülich$$b0$$kFZJ
000862600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000862600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000862600 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000862600 9141_ $$y2019
000862600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862600 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862600 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862600 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862600 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000862600 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862600 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862600 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862600 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862600 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862600 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862600 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862600 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862600 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862600 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862600 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000862600 980__ $$ajournal
000862600 980__ $$aVDB
000862600 980__ $$aI:(DE-Juel1)IAS-2-20090406
000862600 980__ $$aAPC
000862600 980__ $$aUNRESTRICTED
000862600 9801_ $$aAPC
000862600 9801_ $$aFullTexts