001     862600
005     20220930130211.0
024 7 _ |a 10.1038/s41598-019-43077-x
|2 doi
024 7 _ |a 2128/22154
|2 Handle
024 7 _ |a pmid:31036857
|2 pmid
024 7 _ |a WOS:000466127100033
|2 WOS
037 _ _ |a FZJ-2019-02869
082 _ _ |a 600
100 1 _ |a Das, Shibananda
|0 P:(DE-Juel1)164358
|b 0
245 _ _ |a Local stress and pressure in an inhomogeneous system of spherical active Brownian particles
260 _ _ |a [London]
|c 2019
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582032987_1128
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stress of a fluid on a confining wall is given by the mechanical wall forces, independent of the nature of the fluid being passive or active. At thermal equilibrium, an equation of state exists and stress is likewise obtained from intrinsic bulk properties; even more, stress can be calculated locally. Comparable local descriptions for active systems require a particular consideration of active forces. Here, we derive expressions for the stress exerted on a local volume of a systems of spherical active Brownian particles (ABPs). Using the virial theorem, we obtain two identical stress expressions, a stress due to momentum flux across a hypothetical plane, and a bulk stress inside of the local volume. In the first case, we obtain an active contribution to momentum transport in analogy to momentum transport in an underdamped passive system, and we introduce an active momentum. In the second case, a generally valid expression for the swim stress is derived. By simulations, we demonstrate that the local bulk stress is identical to the wall stress of a confined system for both, non-interacting ABPs as well as ABPs with excluded-volume interactions. This underlines the existence of an equation of state for a system of spherical ABPs. Most importantly, our calculations demonstrated that active stress is not a wall (boundary) effect, but is caused by momentum transport. We demonstrate that the derived stress expression permits the calculation of the local stress in inhomogeneous systems of ABPs.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 1
700 1 _ |a Winkler, Roland G.
|0 P:(DE-Juel1)131039
|b 2
|e Corresponding author
773 _ _ |a 10.1038/s41598-019-43077-x
|g Vol. 9, no. 1, p. 6608
|0 PERI:(DE-600)2615211-3
|n 1
|p 6608
|t Scientific reports
|v 9
|y 2019
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/862600/files/30037750000009061628INVOIC2676142293001.pdf
856 4 _ |u https://juser.fz-juelich.de/record/862600/files/30037750000009061628INVOIC2676142293001.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/862600/files/s41598-019-43077-x.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/862600/files/s41598-019-43077-x.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:862600
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164358
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131039
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21