000862605 001__ 862605
000862605 005__ 20240619083554.0
000862605 0247_ $$2doi$$a10.1021/acs.langmuir.8b03792
000862605 0247_ $$2ISSN$$a0743-7463
000862605 0247_ $$2ISSN$$a1520-5827
000862605 0247_ $$2pmid$$apmid:30672300
000862605 0247_ $$2WOS$$aWOS:000458937400033
000862605 037__ $$aFZJ-2019-02874
000862605 082__ $$a540
000862605 1001_ $$00000-0002-2658-3561$$aVan Rie, Jonas$$b0
000862605 245__ $$aAnisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions
000862605 260__ $$aWashington, DC$$bACS Publ.$$c2019
000862605 3367_ $$2DRIVER$$aarticle
000862605 3367_ $$2DataCite$$aOutput Types/Journal article
000862605 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557047451_18998
000862605 3367_ $$2BibTeX$$aARTICLE
000862605 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862605 3367_ $$00$$2EndNote$$aJournal Article
000862605 520__ $$aIn this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1–5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration. As expected, rotational and translational diffusion coefficients generally decreased with increasing concentration. However, the translational parallel diffusion coefficient was found to show a local maximum at the onset of the isotropic-to-nematic phase transition. This is attributed to the increased available space for rods to move along their longitudinal axis upon alignment. This increased parallel diffusion coefficient thus confirms the general idea that rodlike particles gain translational entropy upon alignment while paying the price for losing rotational degrees of freedom. Once the concentration increases further, diffusion becomes more hindered even in the aligned regions due to a reduction in the rod separation distance. This leads once again to a decrease in translational diffusion coefficients. Furthermore, the relaxation rate for fast mode translational diffusion (parallel to the long particle axis) exhibited two regimes of relaxation behavior at concentrations where significant alignment of the rods is measured. We attribute this unusual dispersive behavior to two length scales: one linked to the particle length (at large wavevector q) and the other to a twist fluctuation correlation length (at low wavevector q) along the cellulose nanocrystal rods that is of a larger length when compared to the actual length of rods and could be linked to the size of aligned domains.
000862605 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000862605 588__ $$aDataset connected to CrossRef
000862605 7001_ $$00000-0003-0238-1639$$aSchütz, Christina$$b1
000862605 7001_ $$00000-0001-5225-7121$$aGençer, Alican$$b2
000862605 7001_ $$0P:(DE-HGF)0$$aLombardo, Salvatore$$b3
000862605 7001_ $$0P:(DE-HGF)0$$aGasser, Urs$$b4
000862605 7001_ $$0P:(DE-HGF)0$$aKumar, Sugam$$b5
000862605 7001_ $$0P:(DE-HGF)0$$aSalazar-Alvarez, Germán$$b6
000862605 7001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b7
000862605 7001_ $$00000-0003-4451-1964$$aThielemans, Wim$$b8$$eCorresponding author
000862605 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.8b03792$$gVol. 35, no. 6, p. 2289 - 2302$$n6$$p2289 - 2302$$tLangmuir$$v35$$x1520-5827$$y2019
000862605 8564_ $$uhttps://juser.fz-juelich.de/record/862605/files/acs.langmuir.8b03792-1.pdf$$yRestricted
000862605 8564_ $$uhttps://juser.fz-juelich.de/record/862605/files/acs.langmuir.8b03792-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862605 909CO $$ooai:juser.fz-juelich.de:862605$$pVDB
000862605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b7$$kFZJ
000862605 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000862605 9141_ $$y2019
000862605 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862605 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862605 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862605 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862605 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2017
000862605 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862605 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862605 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862605 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862605 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862605 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862605 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862605 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862605 920__ $$lyes
000862605 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000862605 980__ $$ajournal
000862605 980__ $$aVDB
000862605 980__ $$aI:(DE-Juel1)ICS-3-20110106
000862605 980__ $$aUNRESTRICTED