000862611 001__ 862611
000862611 005__ 20240619083554.0
000862611 0247_ $$2doi$$a10.1021/acs.biomac.8b00493
000862611 0247_ $$2ISSN$$a1525-7797
000862611 0247_ $$2ISSN$$a1526-4602
000862611 0247_ $$2pmid$$apmid:29953209
000862611 0247_ $$2WOS$$aWOS:000441852400008
000862611 037__ $$aFZJ-2019-02880
000862611 082__ $$a570
000862611 1001_ $$00000-0001-5225-7121$$aGençer, Alican$$b0
000862611 245__ $$aEffect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films
000862611 260__ $$aColumbus, Ohio$$bAmerican Chemical Soc.$$c2018
000862611 3367_ $$2DRIVER$$aarticle
000862611 3367_ $$2DataCite$$aOutput Types/Journal article
000862611 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557206198_29566
000862611 3367_ $$2BibTeX$$aARTICLE
000862611 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862611 3367_ $$00$$2EndNote$$aJournal Article
000862611 520__ $$aOne of the most important aspects in controlling colloidal deposition is manipulating the homogeneity of the deposit by avoiding the coffee-ring effect caused by capillary flow inside the droplet during drying. After our previous work where we achieved homogeneous deposition of cellulose nanocrystals (CNCs) from a colloidal suspension by reinforcing Marangoni flow over the internal capillary flow (Gençer et al. Langmuir 2017, 33 (1), 228–234), we now set out to reduce the importance of capillary flow inside a drying droplet by inducing gelation. In this paper, we discuss the effect of gelation on the deposition pattern and on the self-assembly of CNCs during droplet drying. CNC films were obtained by drop casting CNC suspensions containing NaCl and CaCl2 salts. A mixed methodology using rheological and depolarized dynamic light scattering was applied to understand the colloidal behavior of the CNCs. In addition, analysis of the mixture’s surface tension, viscosity, and yield stress of the suspensions were used to gain deeper insights into the deposition process. Finally, the understanding of the gelation behavior in the drying droplet was used to exert control over the deposit where the coffee-ring deposit can be converted to a dome-shaped deposit.
000862611 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000862611 588__ $$aDataset connected to CrossRef
000862611 7001_ $$00000-0002-2658-3561$$aVan Rie, Jonas$$b1
000862611 7001_ $$0P:(DE-HGF)0$$aLombardo, Salvatore$$b2
000862611 7001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b3$$ufzj
000862611 7001_ $$00000-0003-4451-1964$$aThielemans, Wim$$b4$$eCorresponding author
000862611 773__ $$0PERI:(DE-600)2006291-6$$a10.1021/acs.biomac.8b00493$$gVol. 19, no. 8, p. 3233 - 3243$$n8$$p3233 - 3243$$tBiomacromolecules$$v19$$x1526-4602$$y2018
000862611 8564_ $$uhttps://juser.fz-juelich.de/record/862611/files/acs.biomac.8b00493.pdf$$yRestricted
000862611 8564_ $$uhttps://juser.fz-juelich.de/record/862611/files/acs.biomac.8b00493.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862611 909CO $$ooai:juser.fz-juelich.de:862611$$pVDB
000862611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b3$$kFZJ
000862611 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000862611 9141_ $$y2019
000862611 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMACROMOLECULES : 2017
000862611 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862611 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862611 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862611 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862611 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862611 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862611 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862611 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862611 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862611 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862611 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862611 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMACROMOLECULES : 2017
000862611 920__ $$lyes
000862611 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000862611 980__ $$ajournal
000862611 980__ $$aVDB
000862611 980__ $$aI:(DE-Juel1)ICS-3-20110106
000862611 980__ $$aUNRESTRICTED