000862613 001__ 862613 000862613 005__ 20241127124645.0 000862613 0247_ $$2doi$$a10.1016/j.jcou.2019.07.009 000862613 0247_ $$2ISSN$$a2212-9820 000862613 0247_ $$2ISSN$$a2212-9839 000862613 0247_ $$2WOS$$aWOS:000499390900059 000862613 037__ $$aFZJ-2019-02882 000862613 082__ $$a624 000862613 1001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b0$$eCorresponding author 000862613 245__ $$aA Techno Economic Analysis of the Power-to-Gas Route 000862613 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019 000862613 3367_ $$2DRIVER$$aarticle 000862613 3367_ $$2DataCite$$aOutput Types/Journal article 000862613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573541622_30020 000862613 3367_ $$2BibTeX$$aARTICLE 000862613 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862613 3367_ $$00$$2EndNote$$aJournal Article 000862613 520__ $$aA successful implementation of Germany’s energy transition to renewable energy supply requires a strong interlinking between different sectors such as energy supply and mobility which is labeled as sector coupling. Power-to-methane is one option for sector coupling in a future energy system. Here, a techno-economic analysis is presented that investigated different pathways with eight different scenarios. The first four use renewable hydrogen via electrolysis from wind combined with different CO2 sources, i.e., from biogas production, tail gas from power plants, provided by a supplier and from direct air capture. The remaining four scenarios based on conventional hydrogen and carbon dioxide sources are considered for the sake of comprehensive coverage. For all scenarios, a process analysis provides important insights. The economic analysis shows methane costs in the range of €3.51-€3.88 per kg for all optimized process schemes on the power to gas route. Therefore, no economic benefit can be achieved for a gas provider using power-to-methane in his gas grid. Nevertheless, with regard to the GHG reduction target of 80–95% through 2050, green solutions are of special interest. The results of the ecological analysis show a highly promising pathway that makes use of liquid manure. The avoidance of fertilizing soil by dispensing large amounts of liquid manure achieves improvements in acidification and eutrophication of soil and ground water. A switch from fossil diesel to fossil natural gas only yields a reduction of between 7%–22%. Good results were already achieved by applying municipal waste or dry manure offering an 87% GHG reduction. Liquid manure offers a credit of -78.1 g CO2,eq/MJf CH4 instead of GHG emissions on the order of 70.4 g CO2,eq/MJf CH4 using fossil CNG on a well-to-wheel basis. 000862613 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0 000862613 588__ $$aDataset connected to CrossRef 000862613 7001_ $$0P:(DE-HGF)0$$aBaltruweit, Maxana$$b1 000862613 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2 000862613 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b3 000862613 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4 000862613 773__ $$0PERI:(DE-600)2710038-8$$a10.1016/j.jcou.2019.07.009$$gVol. 34, p. 616 - 634$$p616 - 634$$tJournal of CO2 utilization$$v34$$x2212-9820$$y2019 000862613 909CO $$ooai:juser.fz-juelich.de:862613$$pVDB 000862613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b0$$kFZJ 000862613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ 000862613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b3$$kFZJ 000862613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ 000862613 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH 000862613 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000862613 9141_ $$y2019 000862613 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CO2 UTIL : 2017 000862613 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862613 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862613 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000862613 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000862613 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CO2 UTIL : 2017 000862613 920__ $$lyes 000862613 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0 000862613 980__ $$ajournal 000862613 980__ $$aVDB 000862613 980__ $$aI:(DE-Juel1)IEK-3-20101013 000862613 980__ $$aUNRESTRICTED 000862613 981__ $$aI:(DE-Juel1)ICE-2-20101013