000862631 001__ 862631
000862631 005__ 20210130001511.0
000862631 0247_ $$2doi$$a10.21136/AM.2019.0206-18
000862631 0247_ $$2Handle$$a2128/22231
000862631 0247_ $$2WOS$$aWOS:000469441500002
000862631 037__ $$aFZJ-2019-02893
000862631 041__ $$aEnglish
000862631 082__ $$a510
000862631 1001_ $$0P:(DE-HGF)0$$aHoeltgen, Laurent$$b0$$eCorresponding author
000862631 245__ $$aTheoretical foundation of the weighted Laplace inpainting problem
000862631 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000862631 3367_ $$2DRIVER$$aarticle
000862631 3367_ $$2DataCite$$aOutput Types/Journal article
000862631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559043807_31424
000862631 3367_ $$2BibTeX$$aARTICLE
000862631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862631 3367_ $$00$$2EndNote$$aJournal Article
000862631 520__ $$aLaplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.
000862631 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000862631 588__ $$aDataset connected to CrossRef
000862631 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
000862631 7001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b2
000862631 7001_ $$0P:(DE-HGF)0$$aBreuss, Michael$$b3
000862631 773__ $$0PERI:(DE-600)2037535-9$$a10.21136/AM.2019.0206-18$$n3$$p281-300$$tApplications of mathematics$$v64$$x0862-7940$$y2019
000862631 8564_ $$uhttps://juser.fz-juelich.de/record/862631/files/IMjournal2.pdf$$yOpenAccess
000862631 8564_ $$uhttps://juser.fz-juelich.de/record/862631/files/IMjournal2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862631 8564_ $$uhttps://juser.fz-juelich.de/record/862631/files/1801.09068.pdf$$yOpenAccess
000862631 8564_ $$uhttps://juser.fz-juelich.de/record/862631/files/1801.09068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862631 909CO $$ooai:juser.fz-juelich.de:862631$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000862631 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000862631 9141_ $$y2019
000862631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862631 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MATH-CZECH : 2017
000862631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862631 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862631 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862631 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862631 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862631 920__ $$lno
000862631 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000862631 980__ $$ajournal
000862631 980__ $$aVDB
000862631 980__ $$aUNRESTRICTED
000862631 980__ $$aI:(DE-Juel1)JSC-20090406
000862631 9801_ $$aFullTexts