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Abstract. Laplace interpolation is a popular approach in image inpainting using partial

differential equations. The classic approach considers the Laplace equation with mixed

boundary conditions. Recently a more general formulation has been proposed where the

differential operator consists of a point-wise convex combination of the Laplacian and the

known image data. We provide the first detailed analysis on existence and uniqueness

of solutions for the arising mixed boundary value problem. Our approach considers the

corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert

the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our

analysis shows that solutions do not exist unconditionally. The weights need some regularity

and must fulfil certain growth conditions. The results from this work complement findings

which were previously only available for a discrete setup.
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1. Introduction

Image inpainting deals with recovering lost image regions or structures by means

of interpolation. It is an ill-posed process; as soon as a part of the image is lost, it

cannot be recovered correctly with absolute certainty, unless the original image is

completely known. The inpainting problem goes back to the works of Masnou and

Morel as well as Bertalmío and colleagues [4,36], although similar problems have been

considered in other fields already before. There exist many inpainting techniques,

often based on interpolation algorithms, but partial differential equation (PDE)-based

approaches are among the most successful ones, see e.g. [20]. Among these, strategies
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As already mentioned, finding the best pixel data is a very challenging task.

Mainberger et al. [34] consider the combinatorial point of view of this task while

Belhachmi and colleagues [3] approach the topic from the analytic side. Recently [25],

the “hard” boundary conditions in (1.1) have been replaced by softer weighting

schemes. These blend the given image data with the information obtained from the

differential operator and can be written as

(1.2)

{
c (u− f) + (1− c) (−∆)u = 0, in Ω,

∂nu = 0, in ∂Ω,

with a weighting function (also called mask) c : Ω → R. Optimising such a weighting

function is notably simpler, at least in discrete setups. We remark that (1.1) is a

special case of (1.2) with c(x) = 1 for x ∈ ΩK and c(x) = 0 else.

Equation (1.1) is well understood and there exist many results on existence,

uniqueness, and regularity of solutions, see [8,15] for a generic analysis and [11,48] for

a more specific analysis in the inpainting context with Dirichlet boundary conditions

only. Finite difference discretisations of (1.1) and (1.2) have also been subject of

several investigations in the past. One can show that the discrete counterpart of (1.1)

admits a unique solution as soon as the Dirichlet boundary set is non-empty [33].

Similarly, the discrete finite difference formulation of (1.2) admits a unique solution

if c is positive in at least one position [21].

An important question that arises in this context is what these discrete requirements

relate to in the continuous setting. If we consider for example the following model

problem that one may extract from the formulation (1.1),

(1.3)







−∆u = 0, in B1 \Bε,

u = 0, in ∂B1,

u = 1, in ∂Bε,

where Br ⊂ R2 is a ball or radius r with centre at the origin and where ∂Br is its

boundary, then one can show that a smooth solution exists for every ε > 0, but that

no solution in the classic sense (i.e. twice differentiable and fulfilling all boundary

conditions) exists in the limiting case ε → 0. Indeed, the solution is given by

(1.4) u(x, y) =
ln
(
x2 + y2

)

2 ln(ε)
.

Yet, the discrete formulation will admit a unique solution independently of the choice

of ε. It suffices that the corresponding matrix is block irreducible. We refer to [21,33]

for a detailed discussion on the existence of solutions. To remedy the situation for
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the continuous formulation in (1.1), the authors of [3] have required that the set ΩK

should have positive α-capacity. The α-capacity (α > 0) of a subset E ⊂ D of a

smooth, bounded, and open set D is given by

(1.5) inf

{∫

D

|∇u|2 + α|u|2 dx
∣
∣
∣
∣
u ∈ UE

}

where UE is the set of all functions u of the Sobolev space H1
0 (D) such that u > 1

almost everywhere in a neighbourhood of E. If ΩK has positive α-capacity, then a

solution of (1.1) exists in the Sobolev space H1(Ω) [3]. This requirement, that ΩK

must have positive capacity, can be understood as requiring that image pixels are “fat

enough” to allow a reconstruction. It reconciles the continuous and discrete worlds

and leads to a consistent theory on both sides. A higher regularity than H1(Ω) can

be achieved for specific constellations of the boundary data. A rather general theory

is given in [2, 16, 35]. The author of [37] shows that a Hölder continuous solution

exists if the data is regular enough. Finally, [7] discusses the regularity of solutions

on Lipschitz domains. Let us mention that Caselles et al. [9] have also discussed

this inability of the Laplacian to recover images from isolated points and that they

suggested absolutely minimising Lipschitz extensions as an alternative.

The authors of this manuscript are not aware of any similar theory that would

remedy the apparent discrepancy between (1.2) and its discrete counterpart. The

discrete setup is almost always solvable. On the other hand, solutions for the

continuous model are only known for some special cases such as c being bounded

between two positive constants in the interval (0, 1), or c being itself a constant [8,15].

For inpainting purposes it is important that c may map to the whole unit interval

and even beyond. Regions with c ≡ 1 keep the data fixed and if c exceeds the value 1,

then contrast enhancing in the reconstruction is possible, see [22,26].

Here, we attempt to bridge that gap between the discrete setup and the continuous

model for the case when c maps to [0, 1]. We show that a weak solution exists if

certain assumptions on the weight functions are met. Special interest will be paid to

occurring requirements on c and whether they correspond to discrete counterparts.

We aim at applying the theorem of Lax-Milgram in purpose-built weighted Sobolev

spaces. As such, the contributed novelties of this manuscript are twofold. First

we complement the well-posedness study of (1.1) and c > 1, which has recently

been discussed in [23] with the missing case where c maps to [0, 1] and secondly, we

introduce weighted Sobolev spaces to the image processing community. These spaces

bear a certain number of interesting properties that can also be useful for other image

analysis tasks, see e.g. [6].

In the next section we first derive the weak formulation corresponding to (1.1) and

introduce the weighted Sobolev spaces where the solution is sought. Then we will
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state the necessary conditions on the weight function c that must be fulfilled to assert

the existence of a solution. Finally we show that a unique solution exists.

2. Inpainting with the weighted Laplacian

We assume the following requirements on our domain Ω and our data f . These

assumptions will hold throughout the whole paper, unless mentioned otherwise. Even

though some of these are stronger than necessary, they are not uncommon in the

image processing context. Further, they help us to keep the discussion on PDE-based

models low on technical details.

(1) Ω is an open, connected and bounded subset of R2 with C∞ boundary ∂Ω.

(2) ΩK $ Ω is a closed subset of Ω with positive Lebesgue measure. It represents

the known data locations used to recover the missing information on Ω \ ΩK .

The interpolation data is given by f(ΩK). The boundary ∂ΩK , is assumed to

be C∞, too.

(3) f : Ω → R is a C∞ function representing the given image data to be interpol-

ated by the underlying PDE. Here, Ω denotes the closure of Ω.

(4) The boundaries ∂Ω and ∂ΩK do not intersect and neither of the boundaries

∂Ω or ∂ΩK are empty.

As already mentioned in the previous section, the classic formulation for PDE-based

inpainting with the Laplacian reads

(2.1)







−∆u = 0, in Ω \ ΩK ,

u = f, in ∂ΩK ,

∂nu = 0, in ∂Ω.

Using the findings from [15, 23], it is easy to show that (2.1) is well-posed and

that a unique weak solution exists in a subspace of H1(Ω). If we define a function

c : Ω → {0, 1} with c(x) ≡ 1 when x ∈ ΩK and c(x) ≡ 0 else, then (2.1) can also be

rewritten as

(2.2)

{
c (u− f) + (1− c) (−∆)u = 0, in Ω,

∂nu = 0, in ∂Ω.

Interestingly, the latter formulation also makes sense if we generalise to c : Ω → R, a

fact which was first exploited in [25]. If c has binary values in the set {0, 1}, then (2.2)

is equivalent to (2.1) with the Dirichlet boundary conditions specified by f at those

regions where c equals 1. Equation (2.2) can also be interpreted from a physical or

chemical point of view. We are in the presence of a stationary reaction-diffusion

equation. The diffusive term (1−c)(−∆)u is responsible for spreading the information
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possible to generate setups that lead to contradicting requirements, see [2, 35] for

a more detailed discussion on the existence and regularity of solutions when the

boundary conditions intersect. A more thorough discussion of intersecting boundary

conditions would however be beyond the scope of this work. Finally, Item (6) is

necessary to assert the existence of our weighted Sobolev spaces. We remind, that a

weight function (i.e. a measurable and almost everywhere positive function) ω is in

the Ap(Rn) (1 < p < ∞) Muckenhoupt class if there exists a positive constant Cp,ω

such that

(2.3) sup
B

{(
1

|B|

∫

B

ω(x) dx

)(
1

|B|

∫

B

ω(x)
1

1−p dx

)p−1
}

= Cp,ω < ∞,

where the supremum is taken over all balls B in Rn. We remark that it follows

from (2.3) that ω
1

1−p will be an element of L1
loc

(Rn) (see [38]). Therefore, Item (6)

implies that 1√
1−c

is an element of L1
loc

(Ω \ ΩK). Let us also remark, that it follows

from Theorem 2.1.4 (resp. Corollary 2.1.6) in [50] that C∞ functions are dense in

weighted Sobolev spaces with Muckenhoupt weights. In concrete applications it may

be difficult to verify that ∇f√
1−c

is in L2(Ω\ΩK). In many cases the function c has been

determined by an optimisation strategy and its properties are not completely known.

Therefore, we have to require explicitly that ∇f√
1−c

is an element of L2(Ω \ ΩK).

Let us now rewrite (2.2) in a more suitable form (also see Fig. 3). In a first step

we explicitly set the regions where c ≡ 1 apart.

(2.4)







c (u− f) + (1− c) (−∆)u = 0, in Ω \ ΩK ,

u = f, in ∂ΩK ,

∂nu = 0, in ∂Ω.

The previous reformulation implies that c < 1 almost everywhere in Ω \ ΩK . A

small detail that will become important in the forthcoming discussions. Since c ∈
H1(Ω, [0, 1]), we can apply the product rule and rewrite (2.4) as

(2.5)







− div ((1− c)∇u)−∇c · ∇u+ c (u− f) = 0, in Ω \ ΩK ,

u = f, in ∂ΩK ,

∂nu = 0, in ∂Ω.

If u solves (2.5), it follows that v := u− f also solves

(2.6)







− div ((1− c)∇v)−∇c · ∇v + cv = g, in Ω \ ΩK ,

v = 0, in ∂ΩK ,

∂nv = h, in ∂Ω,
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with g := (1 − c)∆f and h := −∂nf . For convenience of writing, we will continue

calling the sought solution of (2.6) u and not v. Being able to solve (2.6) is equivalent

to being able to solve (2.5). Yet, this change lets us reduce the problem to the

case with homogeneous Dirichlet boundary conditions. Deriving the associated weak

formulation is now straightforward. Multiplying with a suitable test function ϕ from

some space V (with ϕ ≡ 0 on ∂ΩK) and integrating (2.6) by parts implies that we

must seek a function u ∈ V , which solves

(2.7)

∫

Ω\ΩK

(1− c) ∇u · ∇ϕ− (∇c · ∇u)ϕ+ cuϕ dx

︸ ︷︷ ︸

=:Bc(u,ϕ)

=

∫

Ω\ΩK

gϕ dx+

∫

∂Ω

hϕ dH1

︸ ︷︷ ︸

=:F (ϕ)

for all ϕ ∈ V . Here, H1 denotes the one dimensional Hausdorff measure. We defer

the exact specification of V to the forthcoming sections.

Since c maps to the unit interval, we are in the presence of a so called degenerate

elliptic equation [45,51] or sometimes also referred to as a PDE with non-negative

characteristic form [40]. Such PDEs are characterised by the fact, that their highest

order term is allowed to vanish. This fact, that the second order differential operator

may vanish locally, requires a more sophisticated analysis. The key issue to approach

such problems is to select the correct function space V and to place necessary

restrictions onto c.

The canonic strategy to show existence and uniqueness of a weak solution consists

in applying the Lax-Milgram Theorem [15]. The crucial part will be the coercivity of

the bilinear form Bc and the boundedness of Bc and F . Obviously the boundedness

of Bc and F depends a lot on the choice of the space V and c. To show coercivity of

the bilinear form, we must study the behaviour of

(2.8) Bc(u, u) =

∫

Ω\ΩK

(1− c)|∇u|2 − (∇c · ∇u)u+ c u2 dx.

The coercivity of (2.8) is not immediately visible due to the complex interplay between

u, c, and their derivatives. The following section sheds light on the requirements to

prove well-posedness of the considered problem.

2.1. Weighted Sobolev Spaces. Weighted Sobolev spaces have been studied intens-

ively in the past. Their uses are manifold, but they are most often found in the analysis

of PDEs with vanishing or singular diffusive term. The works [27,32,38,40,45,51]

give an almost complete overview of their usefulness. For the sake of completeness,

we shortly summarise how these spaces are set up.

In the following we denote by WΩ the set of weight functions ω, i.e. ω is a measurable

and almost everywhere positive function in some domain Ω. For 1 6 p < ∞ and
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ω ∈ WΩ we define the corresponding weighted Lp space as

(2.9) Lp(Ω;ω) :=

{

u : Ω → R

∣
∣
∣
∣
∣
‖u‖Lp(Ω;ω) :=

(∫

Ω

|u(x)|pω(x) dx
) 1

p

< ∞
}

.

In a similar way as Sobolev spaces refine the Lebesgue spaces we can also refine our

weighted Lp spaces by including the weak derivatives into the norm. Here, weak

derivatives Dαu of a function u are to be understood as (see also [19])

(2.10)

∫

Ω

u(x) (Dαη(x)) dx = (−1)|α|
∫

Ω

(Dαu(x)) η(x) dx, ∀η ∈ C∞
0 (Ω) .

Different weights for different derivatives are also possible. For a given collection

Sk := {ωα ∈ WΩ | |α| 6 k} of weight functions, we denote by W k,p(Ω;Sk) the set of

all functions u defined on Ω and whose (weak) derivatives Dαu of order |α| 6 k (α

being a multi-index) belong to Lp (Ω;ωα). We can equip this vector space W k,p(Ω;Sk)

with the norm

‖u‖Wk,p(Ω;Sk)
:=




∑

|α|6k

∫

Ω

|Dαu(x)|pωα(x) dx





1
p

=




∑

|α|6k

‖Dαu‖pLp(Ω;ωα)





1
p

.

(2.11)

One can show that the space W k,p(Ω;Sk) is a Banach space if ωα ∈ L1
loc

(Ω) and

ω
−1
p−1
α ∈ L1

loc
(Ω) for all |α| 6 k, see [29,31]. Note that this requires that all derivatives

up to the order k must be attributed to such a weight ωα. However, one can also

show that W k,p(Ω; S̃k) is still complete if S̃k $ Sk contains at least one weight ωα

with |α| = k and a weight for |α| = 0, see [28,30].

We remark that for p = 2 there is a canonical choice for a scalar product:

(2.12) 〈u , v〉Wk,2(Ω;Sk)
:=
∑

|α|6k

∫

Ω

Dαu(x)Dαv(x)ωα(x) dx .

Thus, with a suitable choice of weights we obtain a Hilbert space. If all the weight

functions are constant and equal to one, then our weighted spaces coincide with the

usual definition of Sobolev spaces. We refer to [27,32] for a more complete listing of

possible weighted Sobolev space constructions.

By looking at (2.7) it becomes apparent why these weighted Sobolev spaces are

useful. The function c (resp. 1− c) can be considered as a weight function and simply
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be integrated into the space definition. This simplifies the proofs to show existence

and uniqueness, since boundedness and coercivity are easier to show and theorems

such as Lax-Milgram can be applied in any Hilbert space.

Our goal now will be to consider the corresponding weak formulation of (2.5) in

a suitable weighted Sobolev space V . By applying the Theorem of Lax-Milgram in

these spaces we will show the existence and uniqueness of a weak solution of (2.5).

Let us also remark that alternative approaches may be derived from the works [10,13].

The weights for our space definition should be chosen such that the bilinear form is

equivalent to the norm of our space. Often, the multiplicative factors of the individual

derivatives in the bilinear form offer themselves as viable choices for this task. In our

case however, the function c may vanish locally. This prevents us from using 1− c

and c as weights to define a norm. They only give us a seminorm structure. Such

a situation is briefly described in [28]. We mostly follow that presentation and we

propose the following correspondence between multi-indices α ∈ N2
0 and weights ωα

(2.13) ω(00)
:= 1, ω(10)

:= 1− c(x), ω(01)
:= 1− c(x) .

This yields the scalar product and norm

〈u , v〉V :=

∫

Ω\ΩK

(1− c)∇u · ∇v + uv dx,(2.14a)

‖u‖V :=

(
∫

Ω\ΩK

(1− c)|∇u|2 + u2 dx

) 1
2

,(2.14b)

as well as the following definition for our space V :

(2.15) V :=
{
φ ∈ W 1,2 (Ω \ ΩK ;Sc)

∣
∣φ ≡ 0 on ∂ΩK

}

where Sc is our set of weights given in (2.13). In addition, we define the following

seminorm

(2.16) ~u~V
:=

(
∫

Ω\ΩK

(1− c)|∇u|2 dx
) 1

2

.

Finally, following the presentation in [32], we note that the bilinear form Bc in (2.7)

can be written compactly as a ternary quadratic form

(2.17) Bc(u, ϕ) =
∑

|α|,|β|61

∫

Ω\ΩK

aα,βD
βuDαϕ dx
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where α, β are multi-indices in N2
0. The weights aα,β must be set as follows to yield

our model:

a(10),(
1
0)

= a(01),(
0
1)

= 1− c(x), a(00),(
0
0)

= c(x),(2.18a)

a(00),(
1
0)

= −∂xc(x), a(00),(
0
1)

= ∂yc(x),(2.18b)

and aα,β = 0 for any other combination of multi-indices. In addition to the previous

assumptions, we now assume further:

(8) There exists a constant κ > 0, such that for all |α|, |β| 6 1, α 6= β,

(2.19) |aα,β | 6 κ
√
aα,αaβ,β

almost everywhere in Ω \ ΩK . For our choice in (2.18), this reduces to

(2.20) |∂xc| 6 κ
√

c(1− c), |∂yc| 6 κ
√

c(1− c)

almost everywhere in Ω \ ΩK .

(9) There exists a constant κ′ > 0, such that for all real vectors ξ ∈ R3 with

entries ξγ (γ being a multi-index in N2
0 such that |γ| 6 1) we have

(2.21)
∑

|α|,|β|61

aα,βξαξβ > κ′
∑

|γ|61

aγ,γξ
2
γ

almost everywhere in Ω \ ΩK . For our choice in (2.18), this reduces to

c ξ21 + (1− c)ξ22 + (1− c)ξ23 − ∂xc ξ1ξ3 + ∂yc ξ1ξ2

> κ′ ((1− c)ξ23 + (1− c)ξ22 + cξ21
)(2.22a)

⇔ (∂yc)ξ1ξ2 − (∂xc)ξ1ξ3 > (κ′ − 1)
(
(1− c)ξ23 + (1− c)ξ22 + cξ21

)
(2.22b)

almost everywhere in Ω \ ΩK .

Items (8) and (9) are technical requirements that are necessary for the coercivity and

the boundedness of Bc. They cannot be avoided without substantial changes to the

forthcoming proofs. Let us remark, that (2.21) can be deduced from (2.19), provided

that κ < 1
2 holds. We refer to [32] for a detailed proof. Equations (2.20) and (2.22b)

enforce a certain well-behaviour on c, by restricting for example the growth speed.

The following findings are a direct consequence of the foregoing results.

Proposition 2.1. The bilinear form Bc from (2.17) is continuous.
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Proof. By using (2.19) and the Hölder inequality we obtain.

|Bc(u, ϕ)| 6
∑

|α|,|β|61

∫

Ω\ΩK

|aα,β ||Dβu||Dαϕ| dx

6 max{κ, 1}
∑

|α|,|β|61

∫

Ω\ΩK

|Dβu|
√

|aβ,β ||Dαϕ|
√

|aα,α| dx

6 K‖u‖V ‖ϕ‖V

(2.23)

where K is some positive constant. We emphasise that the last estimate requires

c 6 1 almost everywhere to be valid. �

Proposition 2.2. There exists a constant κ′ > 0 such that the bilinear form Bc

from (2.17) satisfies the estimate Bc(u, u) > κ′ ~u~
2
V .

Proof. We replace ξα by Dαu and ξβ by Dβu in (2.21). Integrating the resulting

inequality over Ω \ ΩK yields

Bc(u, u) =
∑

|α|,|β|61

∫

Ω\ΩK

aα,βD
αuDβu dx

> κ′
∑

|γ|61

∫

Ω\ΩK

aγ,γ (D
γu)

2
dx

> κ′ ~u~
2
V .

(2.24)

�

To complete the proof of the coercivity of the bilinear form Bc we need a Friedrichs-

like estimate of the form ‖u‖V 6 K ~u~V with some positive constant K. The

particular formulation and preliminaries that we need can be found in [52] as The-

orem 2.3. We repeat it here verbatim for the sake of completeness but refer to its

source for a detailed proof.

In the following theorem we denote by Wc(X) the subset of weights on the space

X which are bounded from above and below by positive constants on each compact

subset Q ⊂ X, i.e. we only allow our weights to degenerate at the boundary of the

domain. The next theorem also considers a constant A which is defined as follows.

For an arbitrary domain X we assume that we can write

(2.25) X =

∞⋃

k=1

Xk

where (Xk)k is a sequence of bounded domains whose boundary can be locally

described by functions satisfying a Lipschitz condition and where Xk ⊂ Xk ⊂ Xk+1
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holds for each k. Finally, let Xk := X \Xk and define

(2.26) Ak = sup
‖u‖Wm,p(X;Sm)61

‖u‖Lp(Xk;w0)

where w0 ∈ Sm is the weight that corresponds to |α| = 0. We define additionally

A := limk→∞ Ak. Obviously A ∈ [0, 1] always holds. This number A is also the

ball measure of non-compactness of the embedding Wm,p(X;Sm) → Lp(X;w0),

see [14, 52]. One can interpret the number A as the distance from the embedding

operator to the next closest compact operator from Wm,p(X;Sm) into Lp(X;w0).

Also, the numbers Ak can be understood as indicators on how much “weight” is put

onto the function along the boundary. Ak < 1 means that there is at least some

weight on the derivatives or inside the domain. Note that in our setup (2.26) simplifies

to

(2.27) Ak = sup
‖u‖

W1,2(Ω\ΩK ;Sc)
61

‖u‖L2(Xk)

where Xk is the complement of a set Xk ⊂ Ω \ΩK and where Sc is the set of weights

from (2.13).

For the following theorem it is important that A < 1, i.e. the weight is not

completely concentrated on the boundary. Let us remark that this requirement is in

accordance with the discrete theory established in [21, 33]. In the discrete setting,

there should be at least one position with positive weight in the interior of the domain.

Let us also emphasise that for our task at hand, such a construction with the

requirement that A < 1 is an additional regularity assumption on our image data

f and the mask function c. Indeed, part of the boundary of the domain that we

consider is fixed where c ≡ 1. Since the Ωk need boundaries that can be described

locally by functions that fulfil a Lipschitz condition, this requirement carries over to

the function c.

As already mentioned, the next theorem is a almost verbatim copy of Theorem 2.3

in [52].

Theorem 2.1. Suppose 1 6 p < ∞ and Sk ⊂ Wc(X). Let ℓ be a functional on

W k,p (X;Sk) with the following properties.

(1) ℓ is continuous on W k,p (X;Sk)

(2) ℓ(λu) = λℓ(u) for all λ > 0 and all u ∈ W k,p (X,Sk).

(3) If u ∈ Pk−1 ∩W k,p (X;Sk) (Pk−1 being the set of all polynomials on Rn of

degree less than k) and ℓ(u) = 0, then u = 0.
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Let A < 1. Then there is a constant κ0 such that

(2.28)

∫

X

|u|pw0 dx 6 κ0



|ℓ(u)|p +
∑

|α|=k

‖Dαu‖pLp(X;wα)



 .

Here, w0 is the weight that corresponds to |α| = 0.

The previous theorem can be seen as a generalisation to weighted spaces of a

well-known theorem for constructing equivalent norms out of seminorms in regular

Sobolev spaces. See Theorem 7.3.12 in [1]. Equation (2.28) can also be considered as

a higher dimensional generalisation of the Hardy inequality. We refer to [41] for an

extensive treatise on this inequality.

We now use Theorem 2.1 with p = 2, k = 1, n = 2, w0 ≡ 1, wα = 1− c for all α,

and

(2.29) ℓ(u) =

∫

∂ΩK

u dH1 .

With these choices we obtain the Friedrichs’ inequality in our space V :

(2.30) ‖u‖2L2(Ω\ΩK) 6 κ0 ~u~
2
V .

Equation (2.30) is the final key building block in showing the existence and uniqueness

of a solution of our PDE. It allows us to show the coercivity of our bilinear form.

Proposition 2.3. If (2.30) holds, i.e. the requirements of Theorem 2.1 are fulfilled

for the choice of ℓ from (2.29) and for our selection of weights for our space V , then

the bilinear form Bc from (2.17) is coercive.

Proof. Equation (2.30) immediately implies that ‖u‖2V 6 (1 + κ0)~u~
2
V . In combina-

tion with (2.24) it follows that

(2.31) Bc(u, u) > κ′ ~u~
2
V >

κ′

1 + κ0
‖u‖2V .

�

Proposition 2.3 completes the analysis of our bilinear form Bc. It remains to show

that the right-hand side of our weak formulation is continuous if we want to apply

the Theorem of Lax-Milgram. This final step is done in the following proposition.

Proposition 2.4. The linear operator F from (2.7) is continuous, provided that

g, ∆f , and ∇f√
1−c

are in L2(Ω \ ΩK).
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Proof. We remark that ϕ ∈ V is 0 along ∂ΩK , and thus we can extend the boundary

integral over that part. Using the Hölder inequality and Green’s first identity, we

obtain

|F (ϕ)| 6
∫

Ω\ΩK

|g||ϕ| dx+

∣
∣
∣
∣

∫

∂Ω

hϕ dH1

∣
∣
∣
∣

6 ‖g‖L2(Ω\ΩK)‖ϕ‖L2(Ω\ΩK) +

∣
∣
∣
∣
∣

∫

Ω\ΩK

∆fϕ+∇f · ∇ϕ dx

∣
∣
∣
∣
∣

6 ‖g‖L2(Ω\ΩK)‖ϕ‖V + ‖∆f‖L2(Ω\ΩK)‖ϕ‖V +

∣
∣
∣
∣
∣

∫

Ω\ΩK

∇f · ∇ϕ dx

∣
∣
∣
∣
∣
.

(2.32)

The last integral can be estimated as follows

∣
∣
∣
∣
∣

∫

Ω\ΩK

∇f · ∇ϕ dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

Ω\ΩK

∇f√
1− c

√
1− c∇ϕ dx

∣
∣
∣
∣
∣

6

∥
∥
∥
∥

∇f√
1− c

∥
∥
∥
∥
L2(Ω\ΩK)

‖∇ϕ‖L2(Ω\ΩK ;1−c)

6

∥
∥
∥
∥

∇f√
1− c

∥
∥
∥
∥
L2(Ω\ΩK)

‖ϕ‖V .

(2.33)

Therefore, it follows that

(2.34) |F (ϕ)| 6
(

‖g‖L2(Ω\ΩK) + ‖∆f‖L2(Ω\ΩK) +

∥
∥
∥
∥

∇f√
1− c

∥
∥
∥
∥
L2(Ω\ΩK)

)

‖ϕ‖V .

Thus, F is a bounded linear functional. �

The authors are not aware of a proof that shows that the requirement ∇f√
1−c

∈
L2(Ω \ ΩK) follows from the requirement ω

−1
2

(10)
= 1√

1−c
∈ L1

loc
(Ω). As a consequence,

both assumptions need to be stated separately. We can now combine our results to

prove our main result.

Theorem 2.2. The weak formulation (2.7) of the mixed boundary value prob-

lem (2.6) has a unique solution in the space V . In addition, we know that

(2.35) ‖u‖V 6
1 + κ0

κ′ ‖F‖V ∗

where κ′

1+κ0
is the constant from (2.31). Here, V ∗ denotes the dual space of V .
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Proof. From Proposition 2.1 and Proposition 2.3 it follows that our bilinear form Bc

is bounded and coercive. Proposition 2.4 shows that the corresponding right-hand

side F is bounded, too. Therefore, from the Theorem of Lax-Milgram (see [15]) it

follows that there exists a unique u ∈ V such that Bc(u, ϕ) = F (ϕ) holds for all

ϕ ∈ V . In addition, this u fulfils ‖u‖ 6 1+κ0

κ′ ‖F‖V ∗ �

Theorem 2.2 shows that a unique solution exists in the space V , which is a subspace

of W 1,2(Ω \ ΩK ;Sc). We now use the following Proposition from [50] where it is

stated as Proposition 2.1.3.

Proposition 2.5. Let D ⊂ Rn be open, 1 6 p < ∞ and m a non-negative

integer. Suppose ω ∈ Ap(Rn). Then Wm,p
ω (D) ⊂ W

m,1
loc

(D) and, if D is bounded,

Wm,p
ω (D) ⊂ Wm,1(D).

It follows from Proposition 2.5 that V ⊂ W 1,1(Ω \ ΩK). We remark that Propos-

ition 2.1.3 in [50] is stated for a single weight. However it carries over to multiple

weight functions since it relies only on the inclusions Lp(D,ω) ⊂ L1
loc

(D).

2.2. What happens if c > 1? Let us shortly discuss the consequences of c exceeding

its upper limit 1. Similar conclusions can also be drawn for the case c 6 0, however,

this latter situation usually does not occur in practice.

There are no restrictions on c when establishing the weak formulation. Applying

c > 1, the main difference would be that 1− c and c would have different signs. In

order to follow the same strategy as in this paper one would have to find suitable

weights for the space definition. In [28] the authors discuss the situation when one

of the weights in the weak formulation is negative and they suggest to multiply the

negative weight with another negative constant to render it positive. Afterwards, a

similar approach as in this paper could be possible.

In our situation there exists a second issue that may be harder to resolve. We

require certain restrictions on the growth of the function c, which are of the form

(2.36) |∂zc| 6 κ
√

c(1− c)

for z being either x or y. The left-hand side of this inequality is always a non-negative

real number. However, the right-hand side becomes complex-valued once c exceeds 1.

These growth restrictions are important to show the coercivity of the bilinear form.

To conclude this section we remark that an alternative approach by means of the

Helmholtz equation already exists for the case c > 1, see [23]. However, this approach

uses different assumptions and yields a well-posedness theory in different spaces.
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3. Conclusion

We have shown that a solution to the inpainting problem with the weighted

Laplacian exists if the weight is a function that maps into the interval [0, 1]. The

well-posedness of the task can be asserted if certain regularity conditions on the

weight function c are met. These requirements are similar to what is needed to

show existence and uniqueness of a solution in a discrete setting. The results in

this manuscript complete the analysis of the inpainting problem with the Laplacian.

While the theory for the discrete setup was complete for any choice of c > 0, the

continuous theory only covered the setup where c > 1. This work complements the

setup where c maps to [0, 1].
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