001     862633
005     20210130001513.0
037 _ _ |a FZJ-2019-02895
041 _ _ |a English
100 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 0
|e Corresponding author
111 2 _ |a Symposium on Quantum and Nanoelectronic Devices
|c Lund
|d 2019-04-29 - 2019-04-29
|w Sweden
245 _ _ |a Phase-coherent transport in topological insulator nanoribbon-based structures
|f 2019-04-29 -
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1557378528_25693
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Other
|2 DINI
520 _ _ |a Three-dimensional topological insulators have been subject of increased interest in the past few years due to their robust topologically protected surface states enclosing an insulating bulk. Especially the spin-momentum locking of these surface states makes this novel material class very attractive for spintronic applications. However, often the transport in the surface states is masked by a pronounced bulk conductance contribution owing to a relatively large background doping. By preparing topological insulator nanoribbons a more favorable surface-to-volume ratio can be achieved. In addition, these nanostructures allow to study confinement related carrier transport. Our topological insulator Bi2Te3 and Sb2Te3-based nanostructures were fabricated by selective-area molecular beam epitaxy using a SiO2/Si3N4-masked Si (111) substrate. We performed low temperature magnetotransport measurements on the nanoribbons, in order to investigate phase-coherent phenomena. Furthermore, nanoribbons were covered in-situ with superconducting electrodes to form topological Josephson junctions. Here, a clear Josephson supercurrent was observed. Measurements under microwave irradiation revealed a series of Shapiro steps. The observed missing of the first step indicates the presence of Majorana states.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
909 C O |o oai:juser.fz-juelich.de:862633
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21