000862658 001__ 862658
000862658 005__ 20220930130211.0
000862658 0247_ $$2doi$$a10.1109/TGRS.2019.2915676
000862658 0247_ $$2Handle$$a2128/23126
000862658 0247_ $$2WOS$$aWOS:000489829200030
000862658 037__ $$aFZJ-2019-02914
000862658 082__ $$a620
000862658 1001_ $$0P:(DE-Juel1)129478$$aJonard, Francois$$b0$$eCorresponding author
000862658 245__ $$aModeling of Multilayered Media Green's Functions With Rough Interfaces
000862658 260__ $$aNew York, NY$$bIEEE$$c2019
000862658 3367_ $$2DRIVER$$aarticle
000862658 3367_ $$2DataCite$$aOutput Types/Journal article
000862658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570004665_15941
000862658 3367_ $$2BibTeX$$aARTICLE
000862658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862658 3367_ $$00$$2EndNote$$aJournal Article
000862658 520__ $$aHorizontally stratified media are commonly used to represent naturally occurring and man-made structures, such as soils, roads, and pavements, when probed by ground-penetrating radar (GPR). Electromagnetic (EM) wave scattering from such multilayered media is dependent on the roughness of the interfaces. In this paper, we developed a closed-form asymptotic EM model considering random rough layers based on the scalar Kirchhoff-tangent plane approximation (SKA) model that we combined with planar multilayered media Green's functions. In order to validate our extended SKA model, we conducted simulations using a numerical EM solver based on the finite-difference time-domain (FDTD) method. We modeled a medium with three layers--a base layer of perfect electric conductor (PEC) overlaid by two layers of different materials with rough interfaces. The reflections at the first and at the second interface were both well reproduced by the SKA model for each roughness condition. For the reflection at the PEC surface, the extended SKA model slightly overestimated the reflection, and this overestimation increased with the roughness amplitude. Good agreement was also obtained between the FDTD simulation input values and the inverted root mean square (rms) height estimates of the top interface, while the inverted rms heights of the second interface were slightly overestimated. The accuracy and the performances of our asymptotic forward model demonstrate the promising perspectives for simulating rough multilayered media and, hence, for the full waveform inversion of GPR data to noninvasively characterize soils and materials.
000862658 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862658 588__ $$aDataset connected to CrossRef
000862658 7001_ $$0P:(DE-HGF)0$$aAndre, Frederic$$b1
000862658 7001_ $$00000-0002-9013-4605$$aPinel, Nicolas$$b2
000862658 7001_ $$00000-0002-0777-7002$$aWarren, Craig$$b3
000862658 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000862658 7001_ $$00000-0002-0358-481X$$aLambot, Sebastien$$b5
000862658 773__ $$0PERI:(DE-600)2027520-1$$a10.1109/TGRS.2019.2915676$$gp. 1 - 11$$n10$$p7671 - 7681$$tIEEE transactions on geoscience and remote sensing$$v57$$x0018-9413$$y2019
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/08734784.pdf$$yRestricted
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/Reprints%20Quote_622119_29217930.0654540513807083806919.pdf
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/Reprints%20Quote_622119_29217930.0654540513807083806919.pdf?subformat=pdfa$$xpdfa
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/08734784.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/Jonard%20IEEE%20TGRS%202019.pdf$$yOpenAccess
000862658 8564_ $$uhttps://juser.fz-juelich.de/record/862658/files/Jonard%20IEEE%20TGRS%202019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862658 8767_ $$810000046616$$92019-05-07$$d2019-05-07$$eHybrid-OA$$jZahlung erfolgt$$lKK: Barbers$$pTGRS-2019-00152$$z2045 USD
000862658 8767_ $$81_13665762950$$92019-06-21$$d2019-07-22$$ePage charges$$jZahlung erfolgt$$z1150 USD
000862658 909CO $$ooai:juser.fz-juelich.de:862658$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129478$$aForschungszentrum Jülich$$b0$$kFZJ
000862658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000862658 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862658 9141_ $$y2019
000862658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862658 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862658 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T GEOSCI REMOTE : 2017
000862658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862658 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862658 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862658 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862658 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862658 980__ $$ajournal
000862658 980__ $$aVDB
000862658 980__ $$aUNRESTRICTED
000862658 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862658 980__ $$aAPC
000862658 9801_ $$aAPC
000862658 9801_ $$aFullTexts