001     862658
005     20220930130211.0
024 7 _ |a 10.1109/TGRS.2019.2915676
|2 doi
024 7 _ |a 2128/23126
|2 Handle
024 7 _ |a WOS:000489829200030
|2 WOS
037 _ _ |a FZJ-2019-02914
082 _ _ |a 620
100 1 _ |a Jonard, Francois
|0 P:(DE-Juel1)129478
|b 0
|e Corresponding author
245 _ _ |a Modeling of Multilayered Media Green's Functions With Rough Interfaces
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1570004665_15941
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Horizontally stratified media are commonly used to represent naturally occurring and man-made structures, such as soils, roads, and pavements, when probed by ground-penetrating radar (GPR). Electromagnetic (EM) wave scattering from such multilayered media is dependent on the roughness of the interfaces. In this paper, we developed a closed-form asymptotic EM model considering random rough layers based on the scalar Kirchhoff-tangent plane approximation (SKA) model that we combined with planar multilayered media Green's functions. In order to validate our extended SKA model, we conducted simulations using a numerical EM solver based on the finite-difference time-domain (FDTD) method. We modeled a medium with three layers--a base layer of perfect electric conductor (PEC) overlaid by two layers of different materials with rough interfaces. The reflections at the first and at the second interface were both well reproduced by the SKA model for each roughness condition. For the reflection at the PEC surface, the extended SKA model slightly overestimated the reflection, and this overestimation increased with the roughness amplitude. Good agreement was also obtained between the FDTD simulation input values and the inverted root mean square (rms) height estimates of the top interface, while the inverted rms heights of the second interface were slightly overestimated. The accuracy and the performances of our asymptotic forward model demonstrate the promising perspectives for simulating rough multilayered media and, hence, for the full waveform inversion of GPR data to noninvasively characterize soils and materials.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Andre, Frederic
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pinel, Nicolas
|0 0000-0002-9013-4605
|b 2
700 1 _ |a Warren, Craig
|0 0000-0002-0777-7002
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
|u fzj
700 1 _ |a Lambot, Sebastien
|0 0000-0002-0358-481X
|b 5
773 _ _ |a 10.1109/TGRS.2019.2915676
|g p. 1 - 11
|0 PERI:(DE-600)2027520-1
|n 10
|p 7671 - 7681
|t IEEE transactions on geoscience and remote sensing
|v 57
|y 2019
|x 0018-9413
856 4 _ |u https://juser.fz-juelich.de/record/862658/files/08734784.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862658/files/Reprints%20Quote_622119_29217930.0654540513807083806919.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862658/files/Reprints%20Quote_622119_29217930.0654540513807083806919.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862658/files/08734784.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862658/files/Jonard%20IEEE%20TGRS%202019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862658/files/Jonard%20IEEE%20TGRS%202019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862658
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T GEOSCI REMOTE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21