001     862692
005     20240711101527.0
024 7 _ |a 10.3390/en12122432
|2 doi
024 7 _ |a 2128/22463
|2 Handle
024 7 _ |a WOS:000473821400205
|2 WOS
024 7 _ |a altmetric:63528633
|2 altmetric
037 _ _ |a FZJ-2019-02946
082 _ _ |a 620
100 1 _ |a Markewitz, Peter
|0 P:(DE-Juel1)130471
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Carbon Capture for CO2 Emission Reduction in the Cement Industry in Germany
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562935175_29082
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The share of global CO2 emissions deriving from the cement industry is about 5%. More than 50% of these are process-related and cannot be avoided. This paper addresses the application of CO2 capture technology to the cement industry. Analyses focusing on post-combustion technology for cement plants are carried out on the basis of detailed model calculations. Different heat supply variants for the regeneration of loaded wash solution were investigated. CO2 avoidance costs are in a range of 77 to 115 EUR/tCO2. The achievable CO2 avoidance rate for the investigated cases was determined to be 70% to 90%. CO2 reduction potentials were identified using CCS technology, focusing on the German cement industry as a case study. The results show that adopting carbon capture technology could lead to a significant reduction in CO2 emissions
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Li
|0 P:(DE-Juel1)129950
|b 1
|u fzj
700 1 _ |a Ryssel, Maximilian
|0 P:(DE-Juel1)173988
|b 2
700 1 _ |a Moumin, Gkiokchan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Yuan
|0 P:(DE-Juel1)168162
|b 4
|u fzj
700 1 _ |a Sattler, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 6
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 7
|u fzj
773 _ _ |a 10.3390/en12122432
|g Vol. 12, no. 12, p. 2432 -
|0 PERI:(DE-600)2437446-5
|n 12
|p 2432 -
|t Energies
|v 12
|y 2019
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/862692/files/Invoice_MDPI_energies-512278.pdf
856 4 _ |u https://juser.fz-juelich.de/record/862692/files/energies-12-02432-v2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/862692/files/energies-12-02432-v2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/862692/files/Invoice_MDPI_energies-512278.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:862692
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21