000862711 001__ 862711
000862711 005__ 20210130001551.0
000862711 0247_ $$2doi$$a10.1002/mrm.27720
000862711 0247_ $$2ISSN$$a0740-3194
000862711 0247_ $$2ISSN$$a1522-2594
000862711 0247_ $$2pmid$$apmid:30883909
000862711 0247_ $$2WOS$$aWOS:000481978800019
000862711 037__ $$aFZJ-2019-02962
000862711 082__ $$a610
000862711 1001_ $$0P:(DE-Juel1)165888$$aSchwerter, Michael$$b0
000862711 245__ $$aInterslice current change constrained B 0 shim optimization for accurate high‐order dynamic shim updating with strongly reduced eddy currents
000862711 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000862711 3367_ $$2DRIVER$$aarticle
000862711 3367_ $$2DataCite$$aOutput Types/Journal article
000862711 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557411849_24549
000862711 3367_ $$2BibTeX$$aARTICLE
000862711 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862711 3367_ $$00$$2EndNote$$aJournal Article
000862711 520__ $$aPurposeTo overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms.Theory and MethodsSpherical harmonic dynamic B0 shimming is complicated by eddy currents, ill‐posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements.ResultsHigh‐order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second‐order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14‐fold reduction of the average maximum shim current changes.ConclusionsThe proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0 homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.
000862711 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000862711 588__ $$aDataset connected to CrossRef
000862711 7001_ $$0P:(DE-HGF)0$$aHetherington, Hoby$$b1
000862711 7001_ $$0P:(DE-HGF)0$$aMoon, Chan Hong$$b2
000862711 7001_ $$0P:(DE-HGF)0$$aPan, Jullie$$b3
000862711 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b4$$ufzj
000862711 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b5$$ufzj
000862711 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$eCorresponding author
000862711 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27720$$gVol. 82, no. 1, p. 263 - 275$$n1$$p263 - 275$$tMagnetic resonance in medicine$$v82$$x1522-2594$$y2019
000862711 8564_ $$uhttps://juser.fz-juelich.de/record/862711/files/Schwerter_et_al-2019-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000862711 8564_ $$uhttps://juser.fz-juelich.de/record/862711/files/Schwerter_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862711 909CO $$ooai:juser.fz-juelich.de:862711$$pVDB
000862711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165888$$aForschungszentrum Jülich$$b0$$kFZJ
000862711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b4$$kFZJ
000862711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b5$$kFZJ
000862711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000862711 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000862711 9141_ $$y2019
000862711 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862711 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000862711 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862711 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862711 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862711 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862711 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862711 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862711 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000862711 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862711 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862711 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862711 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000862711 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000862711 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000862711 980__ $$ajournal
000862711 980__ $$aVDB
000862711 980__ $$aI:(DE-Juel1)INM-11-20170113
000862711 980__ $$aI:(DE-Juel1)INM-4-20090406
000862711 980__ $$aI:(DE-82)080010_20140620
000862711 980__ $$aUNRESTRICTED