001     862711
005     20210130001551.0
024 7 _ |a 10.1002/mrm.27720
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a pmid:30883909
|2 pmid
024 7 _ |a WOS:000481978800019
|2 WOS
037 _ _ |a FZJ-2019-02962
082 _ _ |a 610
100 1 _ |a Schwerter, Michael
|0 P:(DE-Juel1)165888
|b 0
245 _ _ |a Interslice current change constrained B 0 shim optimization for accurate high‐order dynamic shim updating with strongly reduced eddy currents
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1557411849_24549
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeTo overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms.Theory and MethodsSpherical harmonic dynamic B0 shimming is complicated by eddy currents, ill‐posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements.ResultsHigh‐order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second‐order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14‐fold reduction of the average maximum shim current changes.ConclusionsThe proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0 homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hetherington, Hoby
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Moon, Chan Hong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pan, Jullie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Felder, Jörg
|0 P:(DE-Juel1)131761
|b 4
|u fzj
700 1 _ |a Tellmann, Lutz
|0 P:(DE-Juel1)131797
|b 5
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 6
|e Corresponding author
773 _ _ |a 10.1002/mrm.27720
|g Vol. 82, no. 1, p. 263 - 275
|0 PERI:(DE-600)1493786-4
|n 1
|p 263 - 275
|t Magnetic resonance in medicine
|v 82
|y 2019
|x 1522-2594
856 4 _ |u https://juser.fz-juelich.de/record/862711/files/Schwerter_et_al-2019-Magnetic_Resonance_in_Medicine.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862711/files/Schwerter_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:862711
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165888
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131761
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131797
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21