000862730 001__ 862730
000862730 005__ 20240625095110.0
000862730 0247_ $$2doi$$a10.3389/fmolb.2019.00029
000862730 0247_ $$2Handle$$a2128/22308
000862730 0247_ $$2altmetric$$aaltmetric:61481755
000862730 0247_ $$2pmid$$apmid:31131282
000862730 0247_ $$2WOS$$aWOS:000466812100001
000862730 037__ $$aFZJ-2019-02973
000862730 082__ $$a570
000862730 1001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b0$$ufzj
000862730 245__ $$aUnderstanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations
000862730 260__ $$aLausanne$$bFrontiers$$c2019
000862730 3367_ $$2DRIVER$$aarticle
000862730 3367_ $$2DataCite$$aOutput Types/Journal article
000862730 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560429380_27367
000862730 3367_ $$2BibTeX$$aARTICLE
000862730 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862730 3367_ $$00$$2EndNote$$aJournal Article
000862730 520__ $$aHuman G-protein coupled receptors (GPCRs) convey a wide variety of extracellular signals inside the cell and they are one of the main targets for pharmaceutical intervention. Rational drug design requires structural information on these receptors; however, the number of experimental structures is scarce. This gap can be filled by computational models, based on homology modeling and docking techniques. Nonetheless, the low sequence identity across GPCRs and the chemical diversity of their ligands may limit the quality of these models and hence refinement using molecular dynamics simulations is recommended. This is the case for olfactory and bitter taste receptors, which constitute the first and third largest GPCR groups and show sequence identities with the available GPCR templates below 20%. We have developed a molecular dynamics approach, based on the combination of molecular mechanics and coarse grained (MM/CG), tailored to study ligand binding in GPCRs. This approach has been applied so far to bitter taste receptor complexes, showing significant predictive power. The protein/ligand interactions observed in the simulations were consistent with extensive mutagenesis and functional data. Moreover, the simulations predicted several binding residues not previously tested, which were subsequently verified by carrying out additional experiments. Comparison of the simulations of two bitter taste receptors with different ligand selectivity also provided some insights into the binding determinants of bitter taste receptors. Although the MM/CG approach has been applied so far to a limited number of GPCR/ligand complexes, the excellent agreement of the computational models with the mutagenesis and functional data supports the applicability of this method to other GPCRs for which experimental structures are missing. This is particularly important for the challenging case of GPCRs with low sequence identity with available templates, for which molecular docking shows limited predictive power.
000862730 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000862730 588__ $$aDataset connected to CrossRef
000862730 7001_ $$0P:(DE-HGF)0$$aNavarini, Luciano$$b1
000862730 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b2$$eCorresponding author
000862730 773__ $$0PERI:(DE-600)2814330-9$$a10.3389/fmolb.2019.00029$$gVol. 6, p. 29$$p29$$tFrontiers in molecular biosciences$$v6$$x2296-889X$$y2019
000862730 8564_ $$uhttps://juser.fz-juelich.de/record/862730/files/2019-0174762-3.pdf
000862730 8564_ $$uhttps://juser.fz-juelich.de/record/862730/files/2019-0174762-3.pdf?subformat=pdfa$$xpdfa
000862730 8564_ $$uhttps://juser.fz-juelich.de/record/862730/files/fmolb-06-00029.pdf$$yOpenAccess
000862730 8564_ $$uhttps://juser.fz-juelich.de/record/862730/files/fmolb-06-00029.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862730 8767_ $$82019-0174762-3$$92019-04-11$$d2019-05-14$$eAPC$$jDeposit$$lDeposit: Frontiers$$p455032$$z1615 USD
000862730 909CO $$ooai:juser.fz-juelich.de:862730$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b0$$kFZJ
000862730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b2$$kFZJ
000862730 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000862730 9141_ $$y2019
000862730 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862730 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862730 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862730 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862730 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862730 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000862730 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862730 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862730 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862730 920__ $$lyes
000862730 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000862730 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000862730 980__ $$ajournal
000862730 980__ $$aVDB
000862730 980__ $$aUNRESTRICTED
000862730 980__ $$aI:(DE-Juel1)IAS-5-20120330
000862730 980__ $$aI:(DE-Juel1)INM-9-20140121
000862730 980__ $$aAPC
000862730 9801_ $$aAPC
000862730 9801_ $$aFullTexts