000862736 001__ 862736
000862736 005__ 20240708132734.0
000862736 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2019.04.003
000862736 0247_ $$2ISSN$$a0267-3762
000862736 0247_ $$2ISSN$$a1878-2892
000862736 0247_ $$2WOS$$aWOS:000468715700021
000862736 037__ $$aFZJ-2019-02978
000862736 082__ $$a660
000862736 1001_ $$0P:(DE-Juel1)164460$$aHe, Wenting$$b0$$eCorresponding author
000862736 245__ $$aInvestigation on growth mechanisms of columnar structured YSZ coatings in Plasma Spray-Physical Vapor Deposition (PS-PVD)
000862736 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000862736 3367_ $$2DRIVER$$aarticle
000862736 3367_ $$2DataCite$$aOutput Types/Journal article
000862736 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569241810_16862
000862736 3367_ $$2BibTeX$$aARTICLE
000862736 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862736 3367_ $$00$$2EndNote$$aJournal Article
000862736 520__ $$aBy Plasma Spray-Physical Vapor Deposition (PS-PVD), major fractions of the powder feedstock can be evaporated so that the coating builds up mainly from vapor phase. In this work, the deposition mechanisms at different PS-PVD conditions were investigated. Depending on the plasma flow conditions and the substrate temperature, the columns in the coatings possess successively pyramidal, cauliflower, and lamellar shaped tops. In addition, the different microstructures show characteristic crystallographic textures, in which different in-plane and out-of-plane orientations were observed by pole figures. Based on investigations by electron back-scatter diffraction (EBSD), the overall coating growth process can be roughly divided into three subsequent stages: equiaxed growth, competitive growth, and preferential growth. Influences of diffusion and shadowing on final coating microstructure and orientation were discussed. The formation of equiaxed grains was proposed to be caused by high nucleation rates, which are probably induced by large undercooling and super-saturation at the beginning of deposition. The preferential growth orientation was preliminarily explained based on an evolutionary selection mechanism.
000862736 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862736 588__ $$aDataset connected to CrossRef
000862736 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b1
000862736 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b2$$ufzj
000862736 7001_ $$0P:(DE-HGF)0$$aSchwedt, Alexander$$b3
000862736 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000862736 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5
000862736 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2019.04.003$$gVol. 39, no. 10, p. 3129 - 3138$$n10$$p3129 - 3138$$tJournal of the European Ceramic Society$$v39$$x0955-2219$$y2019
000862736 909CO $$ooai:juser.fz-juelich.de:862736$$pVDB
000862736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b1$$kFZJ
000862736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b2$$kFZJ
000862736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000862736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000862736 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862736 9141_ $$y2019
000862736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862736 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2017
000862736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862736 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862736 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862736 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862736 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862736 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862736 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862736 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862736 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862736 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862736 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862736 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000862736 980__ $$ajournal
000862736 980__ $$aVDB
000862736 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862736 980__ $$aI:(DE-82)080011_20140620
000862736 980__ $$aUNRESTRICTED
000862736 981__ $$aI:(DE-Juel1)IMD-2-20101013