000862737 001__ 862737
000862737 005__ 20240711085614.0
000862737 0247_ $$2doi$$a10.1038/s41563-019-0328-1
000862737 0247_ $$2ISSN$$a1476-1122
000862737 0247_ $$2ISSN$$a1476-4660
000862737 0247_ $$2pmid$$apmid:30936480
000862737 0247_ $$2WOS$$aWOS:000465199900017
000862737 0247_ $$2altmetric$$aaltmetric:58332190
000862737 037__ $$aFZJ-2019-02979
000862737 082__ $$a610
000862737 1001_ $$0P:(DE-Juel1)171462$$aDash, Apurv$$b0$$eCorresponding author$$ufzj
000862737 245__ $$aMolten salt shielded synthesis of oxidation prone materials in air
000862737 260__ $$aBasingstoke$$bNature Publishing Group$$c2019
000862737 3367_ $$2DRIVER$$aarticle
000862737 3367_ $$2DataCite$$aOutput Types/Journal article
000862737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557813139_23396
000862737 3367_ $$2BibTeX$$aARTICLE
000862737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862737 3367_ $$00$$2EndNote$$aJournal Article
000862737 520__ $$aTo prevent spontaneous oxidation during the high-temperature synthesis of non-oxide ceramics, an inert atmosphere is conventionally required1,2. This, however, results in high energy demand and high production costs. Here, we present a process for the synthesis and consolidation of oxidation-prone materials, the ‘molten salt shielded synthesis/sintering’ process (MS3), which uses molten salts as a reaction medium and also to protect the ceramic powders from oxidation during high-temperature processing in air. Synthesis temperatures are also reduced, and the final product is a highly pure, fine and loose powder that does not require additional milling steps. MS3 has been used for the synthesis of different ternary transition metal compounds (MAX phases, such as Ti3SiC23, Ti2AlN4, MoAlB5), binary carbides (TiC) and for the sintering of titanium. The availability of high-quality powders, combined with energy and cost savings, may remove one of the bottlenecks for the industrial application of these materials.
000862737 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862737 588__ $$aDataset connected to CrossRef
000862737 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b1$$ufzj
000862737 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000862737 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000862737 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-019-0328-1$$gVol. 18, no. 5, p. 465 - 470$$n5$$p465 - 470$$tNature materials$$v18$$x1476-4660$$y2019
000862737 8564_ $$uhttps://juser.fz-juelich.de/record/862737/files/s41563-019-0328-1.pdf$$yRestricted
000862737 8564_ $$uhttps://juser.fz-juelich.de/record/862737/files/s41563-019-0328-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862737 909CO $$ooai:juser.fz-juelich.de:862737$$pVDB
000862737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171462$$aForschungszentrum Jülich$$b0$$kFZJ
000862737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b1$$kFZJ
000862737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000862737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000862737 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862737 9141_ $$y2019
000862737 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2017
000862737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862737 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862737 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862737 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862737 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862737 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862737 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2017
000862737 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862737 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000862737 980__ $$ajournal
000862737 980__ $$aVDB
000862737 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862737 980__ $$aI:(DE-82)080011_20140620
000862737 980__ $$aUNRESTRICTED
000862737 981__ $$aI:(DE-Juel1)IMD-2-20101013