000862738 001__ 862738
000862738 005__ 20240708132734.0
000862738 0247_ $$2doi$$a10.1016/j.matlet.2019.01.026
000862738 0247_ $$2ISSN$$a0167-577X
000862738 0247_ $$2ISSN$$a1873-4979
000862738 0247_ $$2WOS$$aWOS:000458131200069
000862738 037__ $$aFZJ-2019-02980
000862738 082__ $$a670
000862738 1001_ $$0P:(DE-HGF)0$$aKarimi, Soheil$$b0
000862738 245__ $$aCr2AlC MAX phase foams by replica method
000862738 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000862738 3367_ $$2DRIVER$$aarticle
000862738 3367_ $$2DataCite$$aOutput Types/Journal article
000862738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557813343_23396
000862738 3367_ $$2BibTeX$$aARTICLE
000862738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862738 3367_ $$00$$2EndNote$$aJournal Article
000862738 520__ $$aHighly pure Cr2AlC foams with high pore interconnectivity were processed by replica method, infiltrating commercial polyurethane foams with 20 and 30 pore per inch (ppi). Content of solid, dispersant and thickener was adjusted to achieve slurries with shear-thinning behavior. Cr2AlC foams were successfully obtained after two consecutive infiltrations, followed by two thermal processes, first in air to burn-out the polymeric foams and then in argon to consolidate the porous structure. The developed foams (cylinders with 40 mm diameter and 20 mm height) present high potential as component for heat exchangers and volumetric solar receivers.
000862738 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862738 588__ $$aDataset connected to CrossRef
000862738 7001_ $$0P:(DE-Juel1)171463$$aGo, Teresa$$b1$$ufzj
000862738 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b2$$ufzj
000862738 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b3$$eCorresponding author$$ufzj
000862738 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2019.01.026$$gVol. 240, p. 271 - 274$$p271-274$$tMaterials letters$$v240$$x0167-577X$$y2019
000862738 909CO $$ooai:juser.fz-juelich.de:862738$$pVDB
000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171463$$aForschungszentrum Jülich$$b1$$kFZJ
000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000862738 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862738 9141_ $$y2019
000862738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER LETT : 2017
000862738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862738 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862738 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862738 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862738 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862738 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862738 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862738 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862738 980__ $$ajournal
000862738 980__ $$aVDB
000862738 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862738 980__ $$aUNRESTRICTED
000862738 981__ $$aI:(DE-Juel1)IMD-2-20101013