000862738 001__ 862738 000862738 005__ 20240708132734.0 000862738 0247_ $$2doi$$a10.1016/j.matlet.2019.01.026 000862738 0247_ $$2ISSN$$a0167-577X 000862738 0247_ $$2ISSN$$a1873-4979 000862738 0247_ $$2WOS$$aWOS:000458131200069 000862738 037__ $$aFZJ-2019-02980 000862738 082__ $$a670 000862738 1001_ $$0P:(DE-HGF)0$$aKarimi, Soheil$$b0 000862738 245__ $$aCr2AlC MAX phase foams by replica method 000862738 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019 000862738 3367_ $$2DRIVER$$aarticle 000862738 3367_ $$2DataCite$$aOutput Types/Journal article 000862738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557813343_23396 000862738 3367_ $$2BibTeX$$aARTICLE 000862738 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862738 3367_ $$00$$2EndNote$$aJournal Article 000862738 520__ $$aHighly pure Cr2AlC foams with high pore interconnectivity were processed by replica method, infiltrating commercial polyurethane foams with 20 and 30 pore per inch (ppi). Content of solid, dispersant and thickener was adjusted to achieve slurries with shear-thinning behavior. Cr2AlC foams were successfully obtained after two consecutive infiltrations, followed by two thermal processes, first in air to burn-out the polymeric foams and then in argon to consolidate the porous structure. The developed foams (cylinders with 40 mm diameter and 20 mm height) present high potential as component for heat exchangers and volumetric solar receivers. 000862738 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000862738 588__ $$aDataset connected to CrossRef 000862738 7001_ $$0P:(DE-Juel1)171463$$aGo, Teresa$$b1$$ufzj 000862738 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b2$$ufzj 000862738 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b3$$eCorresponding author$$ufzj 000862738 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2019.01.026$$gVol. 240, p. 271 - 274$$p271-274$$tMaterials letters$$v240$$x0167-577X$$y2019 000862738 909CO $$ooai:juser.fz-juelich.de:862738$$pVDB 000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171463$$aForschungszentrum Jülich$$b1$$kFZJ 000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ 000862738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ 000862738 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000862738 9141_ $$y2019 000862738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER LETT : 2017 000862738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862738 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000862738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000862738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862738 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000862738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862738 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862738 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000862738 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000862738 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000862738 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000862738 980__ $$ajournal 000862738 980__ $$aVDB 000862738 980__ $$aI:(DE-Juel1)IEK-1-20101013 000862738 980__ $$aUNRESTRICTED 000862738 981__ $$aI:(DE-Juel1)IMD-2-20101013