001     862747
005     20220930130211.0
024 7 _ |a 10.7554/eLife.46112
|2 doi
024 7 _ |a 2128/23866
|2 Handle
024 7 _ |a altmetric:64743599
|2 altmetric
024 7 _ |a pmid:31389332
|2 pmid
024 7 _ |a WOS:000484182000001
|2 WOS
037 _ _ |a FZJ-2019-02989
082 _ _ |a 600
100 1 _ |a Agerschou, Emil D.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils
260 _ _ |a Cambridge
|c 2019
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579089413_1549
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Removing or preventing the formation of α-synuclein aggregates is a plausible strategy against Parkinson’s disease. To this end we have engineered the β-wrapin AS69 to bind monomeric α-synuclein with high affinity. In cultured cells, AS69 reduced the occurrence of α-synuclein oligomers and of visible α-synuclein aggregates. In flies, AS69 reduced α-synuclein aggregates and the locomotor deficit resulting from α-synuclein expression in neuronal cells. In a mouse model based on the intracerebral injection of pre-formed α-synuclein seed fibrills (PFFs), AS69 co-injection reduced the density of dystrophic neurites observed three months later. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited auto-catalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-α-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition. These results represent a new paradigm that high affinity monomer binders can be strongly sub-stoichiometric inhibitors of nucleation processes.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Saridaki, Theodora
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Flagmeier, Patrick
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Galvagnion, Céline
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Komnig, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nagpal, Akansha
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gasterich, Natalie
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Heid, Laetitia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Prasad, Vibha
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shaykhalishahi, Hamed
|0 P:(DE-Juel1)167315
|b 9
700 1 _ |a Voigt, Aaron
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 11
|u fzj
700 1 _ |a Dobson, Christopher M.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Falkenburger, Björn H.
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
700 1 _ |a Hoyer, Wolfgang
|0 P:(DE-Juel1)166306
|b 14
|e Corresponding author
|u fzj
700 1 _ |a Buell, Alexander K.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.7554/eLife.46112
|g Vol. 8, p. e46112
|0 PERI:(DE-600)2687154-3
|p e46112
|t eLife
|v 8
|y 2019
|x 2050-084X
856 4 _ |u https://juser.fz-juelich.de/record/862747/files/eLife_invoice_P002849.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862747/files/An%20engineered%20monomer%20binding-protein%20for%20%CE%B1-synuclein%20efficiently%20inhibits%20the%20proliferation%20of%20amyloid%20fibrils.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862747/files/eLife_invoice_P002849.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862747/files/elife-46112-v4.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862747/files/An%20engineered%20monomer%20binding-protein%20for%20%CE%B1-synuclein%20efficiently%20inhibits%20the%20proliferation%20of%20amyloid%20fibrils.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862747/files/elife-46112-v4.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862747
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)166306
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21