000862748 001__ 862748
000862748 005__ 20210130001605.0
000862748 0247_ $$2doi$$a10.1002/mrm.27778
000862748 0247_ $$2ISSN$$a0740-3194
000862748 0247_ $$2ISSN$$a1522-2594
000862748 0247_ $$2altmetric$$aaltmetric:59313246
000862748 0247_ $$2pmid$$apmid:31004385
000862748 0247_ $$2WOS$$aWOS:000485077600007
000862748 0247_ $$2Handle$$a2128/24234
000862748 037__ $$aFZJ-2019-02990
000862748 082__ $$a610
000862748 1001_ $$0P:(DE-HGF)0$$aStabinska, Julia$$b0$$eCorresponding author
000862748 245__ $$aProton exchange in aqueous urea solutions measured by water‐exchange (WEX) NMR spectroscopy and chemical exchange saturation transfer (CEST) imaging in vitro
000862748 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000862748 3367_ $$2DRIVER$$aarticle
000862748 3367_ $$2DataCite$$aOutput Types/Journal article
000862748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567760564_26832
000862748 3367_ $$2BibTeX$$aARTICLE
000862748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862748 3367_ $$00$$2EndNote$$aJournal Article
000862748 520__ $$aPURPOSE:To characterize the proton exchange in aqueous urea solutions using a modified version of the WEX II filter at high magnetic field, and to assess the feasibility of performing quantitative urea CEST MRI on a 3T clinical MR system.METHODS:In order to study the dependence of the exchange-rate constant ksw of urea as a function of pH and T, the WEX-spectra were acquired at 600 MHz from urea solutions in a pH range from 6.4 to 8.0 and a temperature range from T=22∘C to 37∘C . The CEST experiments were performed on a 3T MRI scanner by applying a train of 50 Gaussian-shaped pulses, each 100-millisecond long with a spacing of 100 milliseconds, for saturation. Exchange rates of urea were calculated using the (extended) AREX metric.RESULTS:The results showed that proton exchange in aqueous urea solutions is acid and base catalyzed with the rate constants: ka=(9.95±1.1)×106 l/(mol·s) and kb=(6.21±0.21)×106 l/(mol·s), respectively. Since the urea protons undergo a slow exchange with water protons, the CEST effect of urea can be observed efficiently at 3T. However, in neutral solutions the exchange rate of urea is minimal and cannot be estimated using the quantitative CEST approach.CONCLUSIONS:By means of the WEX-spectroscopy, the kinetic parameters of the proton exchange in urea solutions have been determined. It was also possible to estimate the exchange rates of urea in a broad range of pH values using the CEST method at a clinical scanner.
000862748 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000862748 588__ $$aDataset connected to CrossRef
000862748 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b1$$ufzj
000862748 7001_ $$0P:(DE-HGF)0$$aLjimani, Alexandra$$b2
000862748 7001_ $$0P:(DE-HGF)0$$aWittsack, Hans‐Jörg$$b3
000862748 7001_ $$0P:(DE-HGF)0$$aLanzman, Rotem Shlomo$$b4
000862748 7001_ $$0P:(DE-HGF)0$$aMüller‐Lutz, Anja$$b5
000862748 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27778$$gp. mrm.27778$$n3$$p935-947$$tMagnetic resonance in medicine$$v82$$x1522-2594$$y2019
000862748 8564_ $$uhttps://juser.fz-juelich.de/record/862748/files/Stabinska_et_al-2019-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000862748 8564_ $$uhttps://juser.fz-juelich.de/record/862748/files/Stabinska_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862748 8564_ $$uhttps://juser.fz-juelich.de/record/862748/files/Autorenmanuskript%20Proton%20exchange%20in%20aqueous%20urea%20solutions%20measured%20by%20.._.pdf$$yPublished on 2019-04-19. Available in OpenAccess from 2020-04-19.
000862748 8564_ $$uhttps://juser.fz-juelich.de/record/862748/files/Autorenmanuskript%20Proton%20exchange%20in%20aqueous%20urea%20solutions%20measured%20by%20.._.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-19. Available in OpenAccess from 2020-04-19.
000862748 909CO $$ooai:juser.fz-juelich.de:862748$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b1$$kFZJ
000862748 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000862748 9141_ $$y2019
000862748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862748 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862748 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862748 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000862748 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862748 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862748 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862748 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862748 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862748 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862748 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000862748 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862748 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862748 920__ $$lyes
000862748 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000862748 9801_ $$aFullTexts
000862748 980__ $$ajournal
000862748 980__ $$aVDB
000862748 980__ $$aUNRESTRICTED
000862748 980__ $$aI:(DE-Juel1)ICS-6-20110106
000862748 981__ $$aI:(DE-Juel1)IBI-7-20200312