000862770 001__ 862770 000862770 005__ 20210130001632.0 000862770 0247_ $$2doi$$a10.1038/s41598-019-43635-3 000862770 0247_ $$2Handle$$a2128/22206 000862770 0247_ $$2pmid$$apmid:31086214 000862770 0247_ $$2WOS$$aWOS:000467709100063 000862770 037__ $$aFZJ-2019-03005 000862770 082__ $$a600 000862770 1001_ $$0P:(DE-HGF)0$$aCardenas, D. E.$$b0 000862770 245__ $$aSub-cycle dynamics in relativistic nanoplasma acceleration 000862770 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019 000862770 3367_ $$2DRIVER$$aarticle 000862770 3367_ $$2DataCite$$aOutput Types/Journal article 000862770 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558362860_16697 000862770 3367_ $$2BibTeX$$aARTICLE 000862770 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862770 3367_ $$00$$2EndNote$$aJournal Article 000862770 520__ $$aThe interaction of light with nanometer-sized solids provides the means of focusing optical radiation to sub-wavelength spatial scales with associated electric field enhancements offering new opportunities for multifaceted applications. We utilize collective effects in nanoplasmas with sub-two-cycle light pulses of extreme intensity to extend the waveform-dependent electron acceleration regime into the relativistic realm, by using 10**6 times higher intensity than previous works to date. Through irradiation of nanometric tungsten needles, we obtain multi-MeV energy electron bunches, whose energy and direction can be steered by the combined effect of the induced near-field and the laser field. We identified a two-step mechanism for the electron acceleration: (i) ejection within a sub-half-optical- cycle into the near-field from the target at >TV/m acceleration fields, and (ii) subsequent acceleration in vacuum by the intense laser field. Our observations raise the prospect of isolating and controlling relativistic attosecond electron bunches, and pave the way for next generation electron and photon sources. 000862770 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000862770 588__ $$aDataset connected to CrossRef 000862770 7001_ $$00000-0001-6913-1066$$aOstermayr, T. M.$$b1 000862770 7001_ $$0P:(DE-Juel1)151301$$aDi Lucchio, L.$$b2 000862770 7001_ $$0P:(DE-HGF)0$$aHofmann, L.$$b3 000862770 7001_ $$00000-0002-1710-0775$$aKling, M. F.$$b4 000862770 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b5 000862770 7001_ $$0P:(DE-HGF)0$$aSchreiber, J.$$b6 000862770 7001_ $$00000-0002-7694-9066$$aVeisz, L.$$b7$$eCorresponding author 000862770 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-43635-3$$gVol. 9, no. 1, p. 7321$$n1$$p7321$$tScientific reports$$v9$$x2045-2322$$y2019 000862770 8564_ $$uhttps://juser.fz-juelich.de/record/862770/files/s41598-019-43635-3.pdf$$yOpenAccess 000862770 8564_ $$uhttps://juser.fz-juelich.de/record/862770/files/s41598-019-43635-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862770 909CO $$ooai:juser.fz-juelich.de:862770$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000862770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151301$$aForschungszentrum Jülich$$b2$$kFZJ 000862770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b5$$kFZJ 000862770 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000862770 9141_ $$y2019 000862770 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862770 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000862770 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000862770 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000862770 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000862770 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017 000862770 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000862770 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000862770 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000862770 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862770 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862770 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000862770 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862770 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000862770 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000862770 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000862770 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862770 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000862770 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862770 920__ $$lyes 000862770 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000862770 980__ $$ajournal 000862770 980__ $$aVDB 000862770 980__ $$aUNRESTRICTED 000862770 980__ $$aI:(DE-Juel1)JSC-20090406 000862770 9801_ $$aFullTexts