000862782 001__ 862782
000862782 005__ 20220930130212.0
000862782 0247_ $$2doi$$a10.2136/vzj2018.11.0196
000862782 0247_ $$2Handle$$a2128/22209
000862782 0247_ $$2WOS$$aWOS:000462795600001
000862782 0247_ $$2altmetric$$aaltmetric:58530237
000862782 037__ $$aFZJ-2019-03008
000862782 082__ $$a550
000862782 1001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b0$$eCorresponding author
000862782 245__ $$aModeling the Impact of Biopores on Root Growth and Root Water Uptake
000862782 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000862782 3367_ $$2DRIVER$$aarticle
000862782 3367_ $$2DataCite$$aOutput Types/Journal article
000862782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567774017_14354
000862782 3367_ $$2BibTeX$$aARTICLE
000862782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862782 3367_ $$00$$2EndNote$$aJournal Article
000862782 520__ $$aRoots are known to use biopores as preferential growth pathways to overcome hard soil layers and access subsoil water resources. This study evaluates root–biopore interactions at the root-system scale under different soil physical and environmental conditions using a mechanistic simulation model and extensive experimental field data. In a field experiment, spring wheat (Triticum aestivum L.) was grown on silt loam with a large biopore density. X-ray computed tomography scans of soil columns from the field site were used to provide a realistic biopore network as input for the three-dimensional numerical R-SWMS model, which was then applied to simulate root architecture as well as water flow in the root–biopore–soil continuum. The model was calibrated against observed root length densities in both the bulk soil and biopores by optimizing root growth model input parameters. By implementing known interactions between root growth and soil penetration resistance into our model, we could simulate root systems whose response to biopores in the soil corresponded well to experimental observations described in the literature, such as increased total root length and increased rooting depth. For all considered soil physical (soil texture and bulk density) and environmental conditions (years of varying dryness), we found biopores to substantially mitigate transpiration deficits in times of drought by allowing roots to take up water from wetter and deeper soil layers. This was even the case when assuming reduced root water uptake in biopores due to limited root–soil contact. The beneficial impact of biopores on root water uptake was larger for more compact and less conductive soils.
000862782 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862782 588__ $$aDataset connected to CrossRef
000862782 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b1
000862782 7001_ $$0P:(DE-HGF)0$$aUteau, Daniel$$b2
000862782 7001_ $$0P:(DE-HGF)0$$aPeth, Stephan$$b3
000862782 7001_ $$0P:(DE-HGF)0$$aAthmann, Miriam$$b4
000862782 7001_ $$0P:(DE-HGF)0$$aKautz, Timo$$b5
000862782 7001_ $$0P:(DE-HGF)0$$aPerkons, Ute$$b6
000862782 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7
000862782 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b8
000862782 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2018.11.0196$$gVol. 18, no. 1, p. 0 -$$n1$$p0 -$$tVadose zone journal$$v18$$x1539-1663$$y2019
000862782 8564_ $$uhttps://juser.fz-juelich.de/record/862782/files/Inv-716286.pdf
000862782 8564_ $$uhttps://juser.fz-juelich.de/record/862782/files/Landl_Modeling%20the%20impact%20of%20bp%20on%20root%20growth%20and%20root%20water%20uptake.pdf$$yOpenAccess
000862782 8564_ $$uhttps://juser.fz-juelich.de/record/862782/files/Landl_Modeling%20the%20impact%20of%20bp%20on%20root%20growth%20and%20root%20water%20uptake.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862782 8564_ $$uhttps://juser.fz-juelich.de/record/862782/files/Inv-716286.pdf?subformat=pdfa$$xpdfa
000862782 8767_ $$8INV-715364-R8H0K7$$92019-03-11$$d2019-03-25$$eOther$$jZahlung erfolgt$$z114 USD, Rückerstattung Membership
000862782 8767_ $$8716286$$92019-03-18$$d2019-03-27$$eAPC$$jZahlung erfolgt$$pman#vzj-2018-11-0196$$zFZJ-2019-02064
000862782 909CO $$ooai:juser.fz-juelich.de:862782$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b0$$kFZJ
000862782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b1$$kFZJ
000862782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000862782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b8$$kFZJ
000862782 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862782 9141_ $$y2019
000862782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862782 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000862782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000862782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862782 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862782 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862782 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000862782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862782 920__ $$lyes
000862782 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862782 980__ $$ajournal
000862782 980__ $$aVDB
000862782 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862782 980__ $$aAPC
000862782 980__ $$aUNRESTRICTED
000862782 9801_ $$aAPC
000862782 9801_ $$aFullTexts