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1 Introduction

Active Brownian Filaments with Hydrodynamic Inter-
actions: Conformations and Dynamics

Aitor Martin-Gémez, Thomas Eisenstecken, Gerhard Gompper, and Roland G. Winkler

The conformational and dynamical properties of active self-propelled filaments/polymers are in-
vestigated in the presence of hydrodynamic interactions by both, Brownian dynamics simulations
and analytical theory. Numerically, a discrete linear chain composed of active Brownian particles
is considered, analytically, a continuous linear semiflexible polymer with active velocities chang-
ing diffusively. The force-free nature of active monomers is accounted for—no Stokeslet fluid
flow induced by active forces—and higher order hydrodynamic multipole moments are neglected.
Hence, fluid-mediated interactions are assumed to arise solely due to intramolecular forces. The
hydrodynamic interactions (HI) are taken into account analytically by the preaveraged Oseen ten-
sor, and numerically by the Rotne-Prager-Yamakawa tensor. The nonequilibrium character of the
active process implies a dependence of the stationary-state properties on HI via the polymer re-
laxation times. In particular, at moderate activities, Hl lead to a substantial shrinkage of flexible
and semiflexible polymers to an extent far beyond shrinkage of comparable free-draining poly-
mers; even flexible Hl-polymers shrink, while active free-draining polymers swell monotonically.
Large activities imply a reswelling, however, to a less extent than for non-HI polymers, caused
by the shorter polymer relaxation times due to hydrodynamic interactions. The polymer mean
square displacement is enhanced, and an activity-determined ballistic regime appears. Over a
wide range of time scales, flexible active polymers exhibit a hydrodynamically governed subdif-
fusive regime, with an exponent significantly smaller than that of the Rouse and Zimm models
of passive polymers. Compared to simulations, the approximate analytical approach predicts a
weaker hydrodynamic effect. Overall, hydrodynamic interactions modify the conformational and
dynamical properties of active polymers substantially.

ubiquitous, e.g., filamentous actin or microtubules in the cell cy-

The perpetual conversion of either internal chemical energy, or
utilization of energy from the environment, into directed mo-
tion is a key feature of active matterl’?, Its respective out-of-
equilibrium nature is the origin of intriguing emerging structural
and dynamical properties, which are absent in passive systems.
This particularly applies to soft matter systems, e.g., comprised of
filaments or polymers, which renders active soft matter a promis-
ing class of new materials®?. Nature provides various exam-
ples of filamentous, polymer-like active agents or phenomena
where activity governs the nonequilibrium dynamics of passive
molecules. Propelled biological polar semiflexible filaments are
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toskeleton due to tread-milling and motor proteins®°, In motility
assays, filaments are propelled on carpets of motor proteins an-
chored on a substrate, which results in a directed motion and
the appearance of self-organized dynamical patters.Z*® A char-
acteristic feature of biological cells is the intrinsic mixture of ac-
tive and passive components; specifically the active cytoskeleton
and a large variety of passive colloidal and polymeric objects.
Here, activity implies an enhanced random motion of tracer par-
ticleslZ, Furthermore, the active dynamics of microtubules'® or
actin-filaments'? leads to an accelerated motion of chromoso-
mal loci?¥2l and chromatin??. In addition, ATP-dependent en-
zymatic activity-induced mechanical fluctuations drive molecular
motion in the bacterial cytoplasm and the nucleus of eukaryotic
cells??, Self-propelled rodlike or semiflexible polymer-like objects
are formed via self-assembly, e.g., by dinoflagellates23/2%
in bacterial biofilms, such as Proteus mirabilis2>. Synthetic ac-
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tive or activated colloidal polymers2® are nowadays synthesized

in various ways. Assembly of active chains of metal-dielectric
Janus colloids (monomers) can be achieved by imbalanced inter-
actions, where simultaneously the motility and the colloid inter-
actions are controlled by an AC electric field2229, Electrohydro-
dynamic convection rolls lead to self-assembled colloidal chains in
a nematic liquid crystal matrix and directed movement=Y, More-
over, chains of linked colloids, which are uniformly coated with
catalytic nanoparticles, have been synthesizes2!. Hydrogen per-
oxide decomposition on the surfaces of the colloidal monomers
generates phoretic flows, and active hydrodynamic interactions
between monomers results in an enhanced diffusive motion=L,

Valuable insight into the properties of self-propelled filaments
and polymers, or their passive counterparts embedded in an ac-
tive environment, is obtained by computer simulations and ana-
lytical theory. Thereby, typically active Brownian polymers (AB-
POs), neglecting hydrodynamic interactions (HI) (in the follow-
ing, we will denote such polymers as ABPOs-HI), have been con-
sidered®2%42l but also particular aspects of fluid-mediate interac-
tions have been studied 214650, Filaments are modeled as semi-
flexible polymers, with an implementation of activity adapted
to the particular propulsion mechanism. Polar polymers, rep-
resenting actin filaments or microtubules driven by molecular
motors, are typically propelled by forces tangential to the poly-
mer contour>04047M85TH53 Here  a sufficiently high activity
leads to shrinkage and compactification“?>% ABPOs, where ev-
ery monomer experiences an independent active force whose ori-
entation changes in a diffusive manner23#42152 or passive poly-
mers embedded in an environment of active Brownian particles
(ABPs), 2438l exhibit a different behavior. Flexible ABPOs-HI swell
with increasing activity due to local active forces overpowering
thermal noise3338:42545  Semiflexible ABPOs-HI shrink first at
moderate activities owing to active intramolecular stresses com-
peting with bending forces, and swell for higher activities similar
to flexible ABPOs-HI=#4244l 1p a]l cases, a faster dynamics is ob-
tained3313538140/42-4455]

Hydrodynamics changes the properties of active systems in var-
ious ways. Since an individual self-propelled particle—an isolated
monomer in the case of a colloidal-type polymer26lis force and
torque free, it creates a flow field lacking a Stokeslet, but in-
cludes higher multipole contributions1042>6-61ll Conformational
changes and the interference of the monomer flow fields lead
to autonomous filament/polymer motion even when individual
monomers are non-motile214642  The conformational and dy-
namical properties of polar (actively) driven filaments, which are
not force free, are also strongly affected by hydrodynamic inter-
actions4Z48, In particular, hydrodynamic coupling between two
filaments leads to cooperative effects48.

In this article, we analyze the influence of hydrodynamic inter-
actions on the conformational and dynamical properties of AB-
POs, denoted as ABPOs+HI in the following, by computer sim-
ulations and an analytical approach. In simulations, we em-
ploy a bead-spring linear phantom or self-avoiding polymer with
ABP monomers (cf. Fig. [I), where the ABP propulsion direc-
tion changes diffusively,®? and hydrodynamic interactions are
taken into account Rotne-Prager-Yamakawa hydrodynamic ten-
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sor.©304 For the analytical calculations, we consider a Gaus-
sian semiflexible polymer,4202166 with active sites modeled by
an Ornstein-Uhlenbeck process (active Ornstein-Uhlenbeck par-
ticle, AOUP), 426768l yyhere the active velocity vector changes in
a diffusive manner; here, HI is included via the preaveragred Os-
een tensor.°270 The main purpose of our study is to resolve the
influence of hydrodynamics on the properties of self-propelled
polymers, respecting the force-free nature of an individual active
agent. Hence, no Stokeslet due to self-propulsion is present. Only
Stokeslets arising from bond, bending, and excluded-volume in-
teractions between monomers, as well as thermal forces are con-
sidered. Moreover, we neglect higher order multipole contribu-
tions of the active monomers, especially the force dipole. Since
we consider point particles, source multipoles are also absent. All
these multipoles decay faster than a Stokeslet. Hence, we cap-
ture the long-range character of HI in polymers of a broad class
of active monomers. As far as near-field hydrodynamic effects
are concerned, our model closest resembles a polymer composed
of neutral squirmers, 202752061 where particular effects by higher
multipole interactions between monomers are not resolved. 4042
Our studies reveal a decisive influence of hydrodynamic interac-
tions on the polymer conformations and dynamics. In particu-
lar, even flexible ABPOs+HI shrink at moderate activities, where
ABPOs-HI swell monotonically. At high activities, ABPOs+HI
swell, but to an extent, which is considerably smaller than that
of ABPOs-HI. This indicates a dependence of the stationary-state
distribution function on hydrodynamics, an effect absent for pas-
sive systems. The reason is the violation of the fluctuation-
dissipation theorem of the active processes, which leads to the de-
pendence of stationary-state properties on the hydrodynamically
modified relaxation times. The shrinkage is then a consequence
of the time-scale separation between the thermal process, dom-
inating for zero or very weak activities, and the active process
with hydrodynamically accelerated relaxation times. The modi-
fied, activity-dependent relaxation times also affect the transla-
tion motion, and a subdiffusive time regime appears, where the
mean square displacement (MSD) exhibits a power-law depen-
dence with the exponent o = 2/5, significant smaller than the
Zimm value, o’ = 2/3, of a passive polymer.

The manuscript is organized as follows. Section[2]describes the
discrete model of the ABPO along with the simulation approach,
and presents simulation results. Section [3| describes the contin-
uum model of an active polymer, its analytical solution, and dis-
cusses conformational and dynamial properties. Section [4] sum-
marizes our findings.

2 Computer simulations

2.1 Model

A semiflexible active polymer is composed of N,, active Brownian
particles (ABPs) (i = 1,...,N,,, cf. Fig. ,33«‘62 which obey the
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Fig. 1 lllustration of the activity-induced flow by the motion of an
ABPO+HI. Several ABPs moving by chance together in a certain direc-
tion, indicated by the velocity arrow v, drag other connected ABPs, which
in turn exert a force, F, indicated by the red arrow, on the fluid inducing
Stokes flow. The small arrows v,, display the direction of the active veloc-
ity. No flow field is generated by the active motion of an individual ABP.
An animation of the dynamics of a discrete ABPO+HlI is provided in the
ESI.

equations of motion

N/”

Fi(t) = voei(t)+ Y Hyj [Fi(1)+Ti(1)], )]
=

e(t) = M;(t) < e(t). )

Here, r;(r) and #;(t) denote the position and velocity of particle
i, respectively, and v;(¢) = vpe;(¢) is the active velocity with the
propulsion direction e; (|e;] = 1), which changes in a diffusive
manner according to Eq. . The forces F;(t) = —V,, (U + U, +
Uypy) following from the bond (U;), bending (U,), and volume
exclusion (Ur;) potentials,©2
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where R; ;| = ri;1 —r; is the bond vector, r;; = r; — r; the vector
between monomers i and j, and r;; = |r;;|. The energy ¢ mea-
sures the stength of the purely repulsive potential, and o is the
diameter of a monomer. I'; and f}; are Gaussian and Markovian
stochastic processes with zero mean and the second moments

<r,~(;)r§(;’)> = 2UpTH; 8(1 1) , 6)

(flia (1) (t')) = 2Dr8up8;;8(t —1")) | @

where I ,T denotes the transpose of I';, and Hi;' the inverse of
H;;; T is the temperature, kg the Boltzmann constant, and Dy the

rotational diffusion coefficient of a spherical colloid. The tensor
H;;(rij) = 6;;1/3nnl+ (1 — §;;)Q(r;;) accounts for hydrodynamic
interactions, with the first term including local friction, and the
Rotne-Prager-Yamakawa tensor 36471
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with the solvent viscosity 1 and the unit matrix I. We assume a
touching bead model of spherical colloids, hence, the monomer
hydrodynamic radius is half of the bond length /. The Rotne-
Prager-Yamakawa tensor insures the positive definiteness of the
hydrodynamic tensor even at small distances.

Q(rij) =

)

The translational equations of motion are solved via the
Ermark-McCammon algorithm.7273 The procedure to solve the
equations of motion (2) for the orientation vectors is described in
Sec. S-IV of the ESL.7%

We characterize activity by the Péclet number Pe and the ra-
tio A between translational, Dy = kgT /371l, and rotational, Dg,
diffusion coefficient of an isolated monomer, where

Vo Dy

Pe— 0 _or
¢~ IDg’ 2Dy

9
The coefficient k; (Eq. (@) for the bond strength is adjusted ac-
cording to the applied Péclet number, in order to avoid bond
stretching with increasing activity. By choosing /% /kgT = (10 +
2Pe)10%, bond-length variations are smaller than 3% of the equi-
librium value [. Furthermore, the scaled bending force coeffi-
cient &, = x,/2/kgT (Eq. [@)) is related to the polymer persistence
length, [, = 1/(2p), by

pL=N &, (1 —coth (K,)) + 1

" &, (1+coth (&) — 1 (10)

The parameters of the truncated and shifted Lennard-Jones po-
tential are 0 = 0.8/ and € = kgT.

2.2 Conformations

We characterize the polymer conformations by the mean square
end-to-end distance. Results for phantom polymers of length
L= (Ny—1)l =491 and L = 199! are presented in Fig.[2| Evidently,
ABPOs in the presence of hydrodynamic interactions exhibit a
pronounced shrinkage for 1 < Pe < 10, where shrinkage depends
on polymer length and is substantially stronger for longer poly-
mers. Semiflexible ABPOs+HI shrink stronger than ABPOs-HI,
but the effect vanishes gradually as pL — 0. This is a consequence
of the reduced influence of hydrodynamic interactions for rather
stiff polymers.Z2 Yet, the asymptotic swollen value for Pe — oo of
ABPOs+HI is smaller than the value for ABPOs-HI, for which the-
ory predicts L?/2 and simulations yield approximately 212 /5.42
Hence, hydrodynamic interactions affect the swelling behavior of
flexible and semiflexible polymers for all Pe > 0. In particular, the
asymptotic size (r2) ~ L?/10 for Pe — oo, which is independent of

Journal Name, [year], [vol.], 1 |3



10’ 102 108
Pe

Fig. 2 Mean square end-to-end distance (simulations) as a function of
the Péclet number for semiflexible polymers with (a) N, = 50 (L = 491)
monomers (bullets) and pL = 5 x 10! (blue), 1.5 x 10! (green), 2.6 (red),
2.5 x 107! (cyan), and 2.5 x 102 (purple), and (b) N,, = 200 (L = 199I)
monomers (squares) for pL = 2 x 10> (blue), 6 x 10! (green), 10! (red),
1 (cyan), and 10~! (purple). In (a), the solid lines are theoretical results
for ABPOs-HI, and bullets are for phantom polymers. In (b) filled squares
correspond to phantom and open squares to self-avoiding polymers. The
dashed lines are guides for the eye. See Fig. |§|for snapshots and the ESI
for a movie.

stiffness, is smaller than the value for an ABPO-HI.

Self-avoidance reduces the extent of shrinkage, specifically of
flexible polymers. This is illustrated in Fig. [2[(b). For pL > 10,
the equilibrium value (r2) of a self-avoiding polymer is swollen
compared to a phantom polymer. Such an ABPO+HI exhibits
a less pronounced shrinkage for all polymer lengths. Natu-
rally, excluded-volume effects vanish with decreasing pL, and for
pL < 1 there is hardly any difference between a phantom and a
self-avoiding polymer. Moreover, the swelling behavior with and
without excluded-volume interactions is rather similar in the limit
Pe > 1. Interestingly, phantom and self-avoiding polymers show
a universal dependence on Pe as they start to swell. Here, ac-
tive forces exceed both, excluded-volume interactions and bend-
ing forces. As predicted by theory (cf. Sec. [3.3), the internal
dynamics is determined by the modes of a flexible polymer, i.e.,
intermolecular tension, in this regime. Snapshots of conforma-
tions with and without HI are presented in Fig.
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Fig. 3 Configurations of flexible phantom ABPOs of length N,, = 50 for
the Péclet numbers Pe = 1 (top) and 10% (bottom) in the presence (green)
and absence (red) of hydrodynamic interactions. A movie of an ABPO+HI
is available at the ESI.

2.3 Dynamical Properties

The dynamics of ABPO+HI is characterized by the monomer
mean square displacement (MSD) averaged over all monomers
(AP2(1)) = X ((ri(t) — ri(0))2) /N,,.. Figure shows MSDs of a poly-
mer with N,, =200 monomers for various Péclet numbers. A pas-
sive polymer exhibits the well-known Zimm behavior, with the
time dependence 2/3 of the MSD in the center-of-mass reference
frame for /17, < 1. At long times ¢/%; > 1, the center-of-mass
displacement dominates the monomer MSD for all Péclet num-
bers. Here, we find the HI-independent MSD (r2,) = 2v3it/ &L
following from Eq. (I) for Pe > 1 (see also Eq. ([@8))). For Péclet
numbers Pe > 1, the active ballistic regime, (p> ~ 12, is present
at short times (yzt,t/%; < 1). Moreover, for /%, 2 1 and moder-
ate Péclet numbers, Pe ~ 10, activity implies a polymer-specific
regime, where the monomer MSD exhibits a power-law depen-
dence (Ar2(r)) ~ %, with an exponent of o' ~2/5, a value smaller
than the exponent o’ =2/3 of the Zimm dynamics. The reduction
of the exponent is a clear consequence of the coupling between
hydrodynamics and activity, since ABPOs-HI always display slopes
o > 1/2, where o = 1/2 is the value of a passive flexible polymer
(Rouse model).*¥ However, this regime appears as a crossover
from the ballistic to the diffusive regime. Nevertheless, it is a
consequence of hydrodynamics with a sub-diffusive motion. The
polymer-specific regime vanishes gradually with increasing Pe. As
discussed in Sec.[3.3] this is a consequence of the decreasing poly-
mer relaxation times with increasing activity.

3 Analytical Model of Active Brownian Poly-
mer in Solution

The simulations of the previous section yield a surprising shrink-
age of even flexible polymers by hydrodynamic interactions. In
order to shed light on the underlying mechanisms, we study an
mean-field analytical model, where an active polymer is described
by a continuous Gaussian semiflexible polymer model.©5%66 This
approach has been applied successfully in the analysis the prop-
erties of ABPO-HI#244 in close quantitative agreement with sim-
ulations.62
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Fig. 4 Mean square displacement of a flexible phantom polymer with
N, =200 (pL = 200) monomers for the Péclet numbers Pe = 0 (blue),
10! (green), 10% (red), and 10 (cyan). The time is scaled by the factor
Y& = 2Dg. The solid lines indicate the monomer MSD and the dashed
lines the MSD in the polymer center-of-mass reference frame. The black
lines are guides for the eye correspond to a power-law fit of the data in
the respective regime.

3.1 Equations of Motion

The polymer is considered as a differentiable space curve r(s,r) of
length L, with contour coordinate s (—L/2 < s < L/2) and time 7.
Activity is introduced in analogy to an active Ornstein-Uhlenbeck
particle (AOUP)®8 by assigning a propulsion velocity v(s,?) to
every point r(s,t) (cf. Fig. [1)2#244 which changes in an inde-
pendent manner. The equation of motion is then given by the

Langevin equation'©0/70
L2
‘9’((;;’) - v(s,t)+/7 , 49 ), r() an
32 / 84 /
x{kaBT ;(sfz’t)—skBT ;(Sf4”)+r(s’,z) ,

with boundary conditions for free ends as specified in Refs.
4214477 The tensor H(r(s), r(s")) accounts for hydrodynamic in-
teractions; it is defined as H(r(s),r(s")) = Q(r(s) — r(s')) + 15 (s —
s')/37wn, where the second term on the right hand side describes
the local friction, and

(12)

1 ArQ Ar
QA) = ganlan] ( A )

is the Oseen tensor®®70. The terms in Eq. with the second
and forth derivative capture chain flexibility, i.e., chain entropy,
and bending forces, respectively. The Lagrangian multipliers v(s)
and vy = v(£L/2) account for the inextensibility of the polymer
(we will denote v as stretching coefficient in the following), and
¢ characterizes the bending stiffnessZ8/Z2, For a polymer in three
dimensions, previous studies yield € = 3/4p and vy = 3/4, where
p = 1/2l, and I, is the persistence length”%7?. Adopting a mean-
field approach, the stretching coefficient v is independent of s and

is determined by the global constraint

/_LL/;2<((93§S)>2>dS=L. (13)

The stochastic force I'(s,t) is assumed to be stationary, Marko-
vian, and Gaussian.02/80

Within the AOUP description of the analytical calculations, the
active velocity v(s,7) is a non-Markovian but Gaussian stochastic
process with zero mean and the correlation function 14142155

((s,1)-v(s 1)) = V3l W § (s — ') . (14

Here, vy is the constant propulsion velocity and yg character-
izes the decay of the velocity correlation function. For a spher-
ical colloid in solution, the relation yz = 2Dy applies, where Dy
is the rotational diffusion coefficient. The correlation function
emerges due to a diffusive motion of either the Ornstein-
Uhlenbeck process for the active velocity, or by the change of the
propulsion direction (unit vector) of an ABP.42108| Since only first
and second moments of the active velocity are required for the
current analytical studies, the results are independent of the un-
derlying active velocity dynamics of an active site—either AOUP
or ABP. Further details on the derivation of the equations of mo-
tion are presented in Ref.[42] including a discussion of the factor

Iin Eq. (TI4).

Self-propelled systems are force and torque free Hence,
only conservative and random forces give rise to Stockeslet-type
hydrodynamic interactions in Eq. (1I). However, we neglect
force-dipole, source-dipole, and higher multipole flow field con-
tributions, as they decay as ¢'(r~2) with distance compared to a
1/r decay of the Stokeslet flow field4.

112

3.2 Solution of the Equations of Motion

3.2.1 Hydrodynamic Tensor: Preaveraging Approximation

The hydrodynamic tensor renders Eq. a nonlinear and non-
local equation of motion. In order to obtain an (approximate) an-
alytical solution, we apply the preaveraging approximation orig-
inally proposed by Zimm®?81 where the hydrodynamic tensor
is replaced by its average over the stationary state distribution
function, i.e., H(r(s) —r(s')) — (H(r(s) — r(s"))) = H(s,s'). Hence,
Eq. turns into a linear equation—an Ornstein-Uhlenbeck
process—with a Gaussian stationary-state distribution function
for the distance Ar(s,s') = r(s) — r(s') of the form©0:68162.80

3 3/2 3AP2
Han= <2m2<s,s'>> xp (’ za2<s,s'>) - WY

with a?(s,s") = ((r(s) —r(s'))?). Note that a(s,s') is not necessar-
ily a function of s — s’ only. The explicit form of a(s,s) will be
discussed later. Preaveraging yields®®

O(]s—s'| -1 3
Q(s,s') =
(s,5) 3 2ma?(s,s')

I=Q(s,s)I, (16)
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and the hydrodynamic tensor becomes

S(s—s)

Hs) = | P50

H(s,s)I. an

+Q(s,s") | I=

The Heaviside step function, ®(x), in Eq. introduces a lower
cut-off, which we choose as 1% In a touching bead model of a
polymer, [ is the bead diameter and, hence, the polymer thickness.

The preaveraging approximation has very successfully been ap-
plied to describe the dynamics of DNAZ® and semiflexible poly-
mers.©® Even quantitative agreement between analytical theory
and simulations of the full hydrodynamic contribution of rather
stiff polymers is achieved,®2 as well as with measurements on
DNA. 76183/ This demonstrates that preaveraging is also suitable for
rather stretched polymers, it, however, fails for rodlike objects.”Z>

3.2.2 Eigenfunction Expansion

The final linear equation is solved by the eigenfunction expansion
$:1) =Y, Xu(1)Pn(s) (18)
n=0

in terms of the eigenfunctions ¢, of the equation

a* d?
ngTd 490’1( ) 2VkBTd 290’1( ) én(Pn(S)v (19)

with the eigenvalues (n € Ny)
£, = kpT (ec,;‘+2v§,$). (20)

The mode numbers &, follow from the boundary conditions. The
respective eigenfunctions and eigenvalues are explicitly presented
in Refs. [4244]77. Specifically, in the limit of a flexible polymer,
pL > 1, the eigenfunctions are

1
Qu(s) = \/Esm ( ) Vn odd (22)
on(s) = \/gcos (n%ts) ,Vn even, (23)

with the wave numbers {, = nn/L and the eigenvalues &, =
2vkgT *n* /L2

The equation of motion (I1) yields the Langevin equation for
the mode amplitudes, x,,(7),

) ZHmn SO +val). 24

The mode representation of the hydrodynamic tensor is H,,, =
(8um + 37N Q) /377, with the preaveraged Oseen tensor Q,,,.°°
The second moments of the stochastic-force amplitudes I',, are
given by

<171(X(t)17n[3(t/)> - 2kBT6aﬁ6(t —t )Hnm ) (25)

with o, € {x,y,z}. The mode representation of the correlation
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function of the active velocity is#2
a(t) - V(1)) = Vile WIS, (26)

In Eq. (24), all modes are coupled in general and the set of
equations can only be solved numerically. To arrive at an ana-
lytical solution, we neglect the off-diagonal terms of the hydro-

dynamic mode tensor H,,;,, which leads to the decoupled equa-
tions©6I69176

dx,(t)

1
et f—nx,, +Hpy (1) +va(t), 27)

with the relaxation times

1 Tn

Tp = = ) (28)
" HI‘U’! én 1 + 37”19}1/1
and 1, = 3wn/&, the relaxation times in absence
of hydrodynamic interactions; for flexible polymers
T, = 3nL? ) (2vkgT mn?) 4477
The stationary-state solution of Eq. is
1,00 = [ O ) 4 L] 29)
for n > 0, and for n = 0 the solution is
Xo(t) = %(0 +/ dr’ 1)+ Hooo(t )} (30)

3.2.3 Averages and Correlation Functions

With the correlation functions of the stochastic forces (25) and
velocities (26), the correlation functions of the mode amplitudes
become (¢t > 1)

<xn(’) 'Xm(t')> = Sum <I@TT67IZ*’/|/%” (31)

2772

Vol i [ —lt—1'| = —|t—1'|/%,

+t—F— e " — YRne "] )
1—(®%)? TR

(o) 20(t)) = (23(0)) +6ksT Hoot (32)

vjl / :
% [2}/Rt — ) o —I—e_YR’] .
Y&
The eigenfunction expansion (18) and the correlation functions
(31) permit us to calculate the mean square distance a(s,s’). Ex-
plicitly, we find

(s.5) = X (22) (9als) = a(s)). (33)
n=1
with the stationary-state average
kgTt, — v3l%2
2\ _ Bl tn 0*n
<"”> = Tiins (34)

As for passive polymers, the relaxation behavior is de-
termined by hydrodynamics. Remarkably, however, the mode-
amplitude correlation functions depend on the hydrody-
namic interactions via the relaxation times (28). In Eq. (34),



the active term with v% leads to enhanced fluctuations, specifi-
cally at small mode numbers,®4 and reflects the violation of the
fluctuation-dissipation relation.®> Thus, HI changes, additionally
to the dynamics, also the stationary-state conformational proper-
ties of an active polymer.

3.2.4 Hydrodynamic Tensor: Mode Representation
In order to determine the relaxation times 7,, the double integral
/L/2 L/2 O(ls—s'| —1I. )Mdslds (35)
67:3 L/2 —L/2 VaX(s,s')
needs to be evaluated, which itself depends via a*(s,s’) on the
Oseen tensor Q,,. Hence, the equation has to be solved in an it-
erative and self-consistent manner, where the double integration,
combined with the summation of Eq. (33), constitutes a major
computational challenge. To arrive at a more easily tractable
expression with a single integral, we apply standard approxi-
mations for the integrals over the functions ¢, in Eq. as,
e.g., described in Ref. [69] for a flexible polymer. For a pas-
sive semiflexible polymer, a*(s,s') is only a function of the dif-
ference |s — /|20 This is no longer the case in the presence
of activity, where a?(s,s') depends on s—s' and s+ in gen-
eral. In fact, an analytical expression of «? for a flexible ABPO-
HI can be calculated by performing the sum in Eq. (33). To ob-
tain an approximate expression, which depends on the difference
|s —s’| only, we replace the difference of the eigenfunctions in

Eq. by the expression approximately valid for a passive poly-
mer, namely @,(s) — @,(s') = 2sin(nz(s —s')/2L) for n odd, and

©On(s) — @, (s") = 0 for n even. As a result, we obtain
az(s) _38 Z ks T T + V%l%'% sin’ (Es) (36)
L S\ 7 14+ 7%, 2L/

and, hence, Q,, is given by

/ L [ —s n
Qun = s nL/ cos T )ds 37)

Aside from the distance a?(s —s'), which depends on activity via
the relaxation times, this expression is identical with that of a
passive polymer.® As shown in Sec. S-I of the ESI, the approxi-
mations of Egs. capture the dependence of a” on the contour
coordinate well, the better the larger the Péclet number.

Assuming a linear dependence of a*(s —s') on |s —§|, i.e
a*(s) = a3|s|L, as for a passive flexible polymer®®, we obtain the
analytical solution of Eq. (37),

1 1
V3m3nag Vi’

in analogy to the Zimm approach®*®?®l.  Choosing for a3 the
result of a flexible ABPO-HI, namely aj = 1/upL + Pe* /6upLA,
where the Péclet number Pe and A are defined in Eq.[9} and p is
given by u = 2v/(3p),%2 we obtain

o, . VpPLU
nn Pe\/ﬁ

an = (38)

(39)

for Pe > 1.

In the following, when not indicated otherwise, the approxi-
mate expressions and are used for the calculation of
the Oseen tensor. Moreover, we use A = 1/3, the value of a spher-
ical colloid of diameter / in solution.

3.3 Stretching Coefficient and Relaxation Times

The stretching coefficient and relaxation times are interdepen-
dent and need to be determined simultaneously. Due to nonlin-
earities, specifically in Q,,, the respective quantities can only be
determined numerically.

We focus here on flexible polymers, where pL > 1, and we set
L/l = pL. Then, in terms of the eigenfunction expansion
Eq. (I3) for the stretching coefficient v, respectively u = 2v/ 3 D,
becomes

oo T 21*‘2
y |Gl vl |y (40)
n=1 n I+ %
with the relaxation times (Eq. (28]))
~ TR
- ___, 41
W (14370 Q) “h

where 1z = nL?/(nkgTp) is the Rouse relaxation time©?7Z, In
the non-hydrodynamic case, i.e., Q,, = 0, we find the asymptotic
solution u = Pe*/3 /6A of Eq. (@0), independent of pL.#2 For the
relaxation times, we recover the Zimm behavior %, = 17, /n3/ 2 at
Pe =0, with the longest relaxation time 7 = n(L/p)>/?/(v/37kpT)
(Zimm relaxation time).

The scaled stretching coefficient, u, is presented in Fig. [5|as a
function of the Péclet number. For the considered polymer lengths
and stiffness, p is independent of pL. Moreover, it increases ap-
proximately linearly with Péclet number for Pe 2> 5, somewhat
weaker than u of comparable passive polymers. Hence, hydrody-
namics modifies the stretching coefficient.

Figure [f] displays longest relaxations times, %;, as function of
Pe. For 1 < Pe < 10, hydrodynamic interactions enhance the de-
cay of the relaxation time with increasing Pe compared to the non-
hydrodynamic case, specifically for pL > 103. Note that u ~ Pe, in-
dependent of the polymer length in the considered length regime.
This is a consequence of an increase of Q,, with increasing Pe (cf.
Sec. S-I. of ESI). In contrast, a slower decay of 7, is obtained
for Pe > 10. Here, we find a strong polymer-length dependence,
which is related to particular values of Q,, (cf. Fig. S.2). The ap-
proximation yields the relation % ~ 1/+/Pe for 3anQ,, > 1,
which describes the Péclet number dependence well in the inter-
val 10 < Pe < 10° for pL = 10°. As shown in Fig. S.2 for shorter
polymers, Q,, varies more slowly with Pe and, hence, %; decays
faster with increasing Pe. In the limit Pe — «, Q,, becomes very
small and the contribution to the relaxation times vanishes gradu-
ally. Hence, 7 approaches the asymptotic dependence %; ~ 1/Pe,
determined by pu.

Results on the mode-number dependence of the relaxations
times for various Pe are presented in Sec. S-III of the ESI. The
intricate dependence of Q,, on the relaxation times poses a ma-
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Fig. 5 Normalized stretching coefficient u = 2v/(3p), solution of
Eqg. (@0), as function of the Péclet number Pe for flexible polymers with
pL=10%, 10*, and 10’ without HI (green) and with HI (blue). The results
are independent of polymer length.

jor challenge for an (approximate) analytical solution, a problem
we were not able to overcome so far.

3.4 Conformational Properties

The conformational properties of a polymer are charac-
terized by the mean square end-to-end distance (r?) =

{(r(L/2) —r(—L/2))?), which is given by

(7)1 5, (e

n,odd

v%lf% ) “42)
1+ YR Tn

in terms of the mode amplitudes of Eq. (34). Numerical results
for (r2) of flexible polymers (pL > 1) are shown in Fig. [7| for
various polymer lengths. Starting from the equilibrium value
(r}) =L/p at Pe =0, ABPOs+HI first shrink with increasing activ-
ity and then swell for higher Pe (solid lines), in qualitative agree-
ment with the simulation results of Sec. In the asymptotic
limit Pe — oo, a limiting value (r?) < L? is assumed. Thereby,
the shrinkage strongly depends on the polymer length and is
more pronounced for longer polymers. As shown in Fig. |7} flex-
ible ABPO-HI exhibit a drastically different behavior and swell
monotonically with increasing activity. The reason for the quali-
tatively different conformational properties rests on the different
polymer-length dependence of the Rouse and Zimm relaxation
times, where 7g/7; ~ /pL. Hence, in the presence of hydro-
dynamic interactions, relaxation times are shorter by the factor
1/+/pL, which can be orders of magnitude for long flexible poly-
mers.

Hydrodynamic interactions lead to a polymer-length depen-
dence of the swelling with increasing Péclet number (Pe < ), as
shown in Fig.|7| For polymer lengths in the range pL ~ 102 — 103,
Q,, depends only weakly on the mode number (cf. Fig. S.2),
hence, replacement of the relaxation times 7%, by the relaxation
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Fig. 6 The longest polymer relaxation time %, Eq. @I)), normalized by
the corresponding passive value % as function of the Péclet number Pe
for flexible polymers with pL = 10° (solid), 10* (dashed), and 103 (dotted).
The green line shows the result of an active polymer in absence of Hl,
where 1, ~ Pe=4/3.

times 77 /n>/? yields

O )

in the limit Y%, > 1, where {(x) is Riemann’s zeta function
(£(3/2) ~2.61). In the limit of very large pL and Pe >> 1, at least
in the vicinity of pL = 10°, %, can be approximated by Q,,, of
Eq. (39), which yields

(r2) ~ ﬁ \/l;%. (44)

Thus, we find the same dependence on pL for both, small and
large pL, and (r2)/L* decreases as 1/(pL)3/2. The dependence
on Pe changes from (r2) ~ Pe for pL ~ 10? — 10 to (r2) ~ Pe’/?
for pL ~ 10°, because u ~ Pe. For an ABPO-HI, we found instead
(r2) ~ LPe*/3 / p A2 since for such a polymer u ~ Pe*/3. Hence,
hydrodynamic interactions lead to a qualitative different Pe de-
pendence.

Figure [7| shows the individual contributions to (r2)—the term
with the relaxation times 7, (dotted lines) and that with v%
(dashed-dotted lines) in Eq. ([@2), respectively. The initial shrink-
age of (r2) with increasing Pe is caused by the decreasing re-
laxation times 7, ~ 1/u with increasing activity. In the ther-
mal contribution of Eq. (@3), (r2) ~ L/(pu), the stretching co-
efficient p increases with increasing activity, which formally im-
plies a decreasing persistence length below the value of a passive
polymer, corresponding to more compact conformations than of
the passive case. The v3-dependent term causes a swelling of
the polymer. For an ABPO-HI, the competing effects lead to an
overall swelling, since swelling exceeds shrinkage. In case of an
ABPO+HI, swelling is weaker due to fluid-induced collective mo-
tion (cf. Fig.|1) compared to the random motion of an ABPO-HI,
and (r?) assumes a minimum. Mathematically, this is reflected
by the shorter relaxation times %, compared to 7,. Hydrodynamic
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Fig. 7 Polymer mean square end-to-end distance (r2), Eq. (@2), as a
function of the Péclet number Pe for flexible ABPOs+HI of length pL =
2 x 107 (orange), 10° (green), 10* (yellow), and 10° (magenta). The blue
lines correspond to a free-draining flexible polymer with pL = 50. The
dotted curves represent the contribution with the relaxation times t, and
the dashed-dotted curves that with v} of Eq. (#2), respectively.

interactions accelerate the polymer dynamics and higher Pe are
required to achieve a significant swelling of an ABPO+HI.

The exponents of the (approximate) power-law regimes for the
various pL values approximately exhibit the above predicted scal-
ing relations with respect to Pe (Pe > 10). The shift of the dashed-
dotted curves in Fig. [7| to smaller <r§> with increasing polymer
length, pL, reflects the discussed decrease in relaxation times by
hydrodynamics.

Figure [8| shows a comparison of analytical and simulation re-
sults. We find good agreement for short polymers (N,, = 50), but
theory yields a less pronounced shrinkage for the longer poly-
mers. We like to emphasize that for an ABPO-HI the theoretical
approach reproduces the simulation data very well.©2 The rea-
son of the discrepancy is not evident, but is related to the applied
approximations, which seem to underestimate hydrodynamic ef-
fects. We speculate that the preaveraging approximation may fail,
because active fluctuations could be large and the replacement of
H(r — 7)) by (H(r—r')) no longer be justified. Yet, the analyti-
cal expression captures the qualitative behavior, and even more
quantitatively the swelling behavior at large Pe is reasonably well
reproduced, although the asymptotic value for Pe — « is some-
what overestimated due to the applied mean-field approximation
of the bond-length constraint.

3.5 Dynamical Properties

The dynamics of the polymers is characterized by the site mean
square displacement (MSD) averaged over the polymer contour,
(AP2(1)) = [((r(s,t) — r(s,0))?)ds/L, which yields

(ar(0)) = (ar2, () + (Ar(0) + (Ar2(), (45

0.4
03
-
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Fig. 8 Mean square end-to-end distance as a function of the Péclet
number of flexible ABPOs+HI for the monomer number N,, = 50 (pL =
50) (blue) and N,, =200 (pL = 200) (green). Solid lines correspond to
analytical and symbols to simulation results.

with the center-of-mass mean square displacement

6kgT 221 B
<A’gm(l)>: Ilj Hoot+yToL(YRf—1+€ Y, (46)
R

Hypo = (1 +371nQg)/(37n), the activity-modified equilibrium
internal-dynamics contribution

(ar3(0)) = % y 6"5# (1-e/%), 47)
n=1

and the active contribution

— 1 & 2v3%2 eI — et/
ArZ(r)) = — - L :
(a0) LE T < s “48)

Remarkably, in the center-of-mass MSD only the thermal con-
tribution includes hydrodynamics, via Hy 78 which depends on
activity through u, whereas the active term is identical with
that of an ABPO-HI#24453  The reason is that swimming is
force free and no Stokeslet is present. Within the approximation
a*(s,s') =~ a*(s—+'), Eq. yields

8
Qoo = e na (49)
Hence, for 371nQq > 1, the thermal center-of-mass diffusion co-
efficient Dy = kgT Qg /L increases somewhat due to activity in the
range 1 < Pe < 50, and decreases for higher Pe (cf. Fig. S.2).

In the asymptotic limit Pe — «, the active polymer is stretched,
and the hydrodynamic contribution to thermal diffusion de-
creases (cf. Fig. S.2 of ESI). As for a passive, rodlike poly-
mer®7075 asymptotically hydrodynamic interactions yield only
small corrections with respect to the polymer-length dependence
of a non-hydrodynamic (free-draining) polymer.

Figure [9] displays the average site mean square displacement
for various Péclet numbers. For a passive flexible polymer, we
recover the well-known Zimm behavior, with (Ar2 (1)) ~ 12/ for
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Fig. 9 Mean square displacement of flexible ABPO+HI, Eq. (45). (a)
MSDs for the Péclet numbers Pe = 10~2 (blue), Pe = 2 x 10! (orange),
Pe = 1.5 x 10> (yellow), and Pe = 10° (purple); the polymer length is
pL=10°. The time is scaled by the Zimm time 7, of a passive polymer.
(b) MSDs for the polymer lengths pL =5 x 10! (blue), 2 x 10% (green), 103
(red), 10* (cyan), and 10° (purple) and Pe = 10%. (Ar2..) = 2(r?) denotes
the asymptotic value of the MSD in the center-of-mass reference. The
dashed lines correspond to the MSD in the polymer center-of-mass ref-
erence frame, Egs. + ([@8), and the solid lines to the overall MSD,
Eqg. (@5). The black lines indicate power laws in the respective regimes.

1/t7 < 1, and a crossover to free diffusion for 1/, > 1027681 1

the presence of activity, four time regimes can be identified

e 1 —» 00— The MSD is dominated by the linear time dependence
of the center-of-mass dynamics, with the diffusion coefficient

_ kBTHO() V%l

R (50)

The other terms approach a constant value equal to 2<r§),

2 . . . . .
where (rg) is the active-polymer radius of gyration. The simu-
lations results are in agreement with the active contribution to
D.

e /%) < 1 < yrt — The active contribution to the MSD is domi-
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nated by (yp%; > 1)

<Ar2 > 2\%1 Z z, (1 e z/r,l) ) (51)

RL ;=

With the power-law dependence %, = % /n® of the relaxation
time and by replacing the sum by an integral, we find

— W2E [t 1=1/80 oo g
<A'3(’)>:T2L (?1) /0 dr ——.  (52)

With the assumption 371Q;; > 1 and Eq. (38), which corre-
sponds to the exponent & = 3/2, Eq. yields

12peS/3
(ar3() ~ Tz)z 13, (53)

i.e., a site sub-diffusive MSD dominated by the internal poly-
mer dynamics. The exponent &' =1—1/& = 1/3 of Eq.
approximately agrees with the full numerical result 2/5 (cf.
Fig. EI) Note that the exponent & (%, ~ 1 /nﬁ‘) is in fact larger
than & = 3/2 for most Pe (cf. mode-number dependence of re-
laxations in Fig. S.3), which leads to an exponent o’ somewhat
larger than o/ = 1/3, consistent with the results of Fig.@ where
we find o ~2/5. Figure |§|(b) emphasizes the universality of
the internal dynamics with increasing pL. The various curves,
especially for the MSD in the center-of-mass reference frame,
asymptotically approach a power-law regime with an exponent
close to the predicted value. This polymer specific regime is ev-
idently only pronounced for pL > 103. Hence, it is not clearly
visible in Fig. [4 of the MSD obtained from simulations.

e /7, yrt < 1 — Taylor expansion of the exponential functions
in Eq. yields

2 =3 =

RN 11 T

Ar(n) =" 2, (54)
< alt) L n; 1+ YT,

consistent with the observed ballistic regime in Fig. [9] This

regime and its dependence on activity and polymer proper-

ties is in quantitative agreement with the simulation results of

Fig.

e t —+ 0 — The MSD is dominated by Eq. (47), and all modes

contribute. Setting %, = % /n°/2 and replacing the sum by an
integral yields
— 2L AN
2 — — - -
(arg(n)) = — <%1> /O —— 59

This is the same relation as obtained for a passive system, ex-
cept that  and % depend on activity. With Eq. (39), we find
the Péclet-number dependence (Ar2(t)) ~ Pe~2/3(t/17)*/? for
Pe = 50 and pL>> 1.

4 Summary and Conclusions

We have presented analytical, numerical, and computer simula-
tion results for the conformational and dynamical properties of
active semiflexible polymers in the presence of hydrodynamic
interactions. In the simulations, the overdamped dynamics of



a bead-spring polymer composed of ABP monomers is studied,
with hydrodynamic interactions captured by the Rotne-Prager-
Yamakawa hydrodynamic tensor. For the analytical treatment, the
Gaussian semiflexible polymer model is adopted, which takes into
account the polymer inextensibility in a mean-field manner by a
constraint for the contour length. Here, activity is modeled as
a Gaussian colored noise process with an exponential temporal
correlation. Hydrodynamic interactions are taken into account by
the preaveraged Oseen tensor. The linearity of the equation of
motion allows for its analytical solution. In any case, our active
forces do not generate a Stokeslet, higher-order active multipole
flow fields, which decay spatial as 1/r> or faster with distance
from the self-propelled active site, are neglected, and only the
presumably dominant Stokeslet field resulting from intramolecu-
lar forces are taken into account.

Most remarkably, we find a strong influence of hydrodynam-
ics on the polymer conformational properties. In absence of hy-
drodynamics, active flexible polymers (ABPOs-HI), with pL > 10,
monotonically swell with increasing activity, Pe, whereas semi-
flexible polymers, with pL < 10, shrink at moderate Pe (the actual
Pe-range depends on the polymer length) and swell for higher Pe,
similar to flexible polymers#244, In contrast, active polymers in
the presence of hydrodynamic interactions (ABPOs+HI) always
shrink for moderate Pe independent of stiffness, and swell again
for high activities, where the asymptotic extension for Pe — o
of an ABPO+HI is significantly smaller than that of an ABPO-
HI. The observed strong influence of hydrodynamics appears over
a Péclet-number range well covered by synthetic active colloids,
where typically Pe < 150.%

Two stochastic processes determine the size and shape of an
ABPO+HI—thermal and active fluctuations. Due to the linear-
ity of the analytical equations of motion and the additivity of the
noise, the fluctuations lead to additive contributions to the mean
square end-to-end distance, which are, however, coupled by the
inextensibility of the polymer. The active fluctuations yield a con-
tribution quadratic in the propulsion velocity (or Péclet number),
similar to the quadratic dependence of the MSD of an ABP1'2,
which leads to a swelling of the polymer, however, with a Pe
dependence smaller than quadratic due to the increase of the
stretching coefficient with increasing Pe. The polymer inexten-
sibility implies enhanced fluctuations of the thermal part of (r2)
by the active noise—expressed by the factor u—corresponding to
a decreasing persistence length with increasing activity associated
with a shrinkage of the polymer size.

Qualitatively, the behavior can be understood as follows. An
increasing activity yields an increasing persistent displacement
Im/l =vo/yRl = Pe/2 of a monomer before it changes its propul-
sion direction. Hence, any disparity in the propulsion direction is
amplified by an increasing Pe and leads to, in average, divergent
monomer trajectories and an increasing intramolecular tension
reflected in the increasing stretching coefficient u. For an ABPO-
HI, the competing shrinkage of the thermal part and swelling of
the active contribution leads to an overall swelling, since swelling
exceeds shrinkage. In case of an ABPO+HI, the reduced swelling
can descriptively be understood by fluid-induced collective mo-
tions compared to random motions in absence of HI (cf. Fig.[I).

Mathematically, this is reflected by the shorter relaxation times 7,
compared to 7,. To achieve a swelling of an ABPO+HI compara-
ble to that of an ABPO-HI requires larger Péclet numbers. As a
consequence, (r2) of an ABPO+HI assumes a minimum at inter-
mediate Pe.

As mentioned several times, we do not take into account
swimmer-specific flow fields of individual monomers. Nonethe-
less, the intramolecular forces create complex flow fields—from
Already for a pair of
monomers, forces along their bond vector constitutes a force
dipole, aside from a potential Stokeslet. In fact, such a force-
dipole field could also exist for a passive polymer, but the stronger
forces of active monomers increase the dipole field and its rele-
vance for the polymer dynamics significantly. Hence, on larger
length scales, embracing more monomers, the overall flow field is
rather complex and a large number of hydrodynamic multipoles
contribute. This dynamically emerging multipoles are a particu-
lar feature of ABPOs+HI and, in their sum, lead to the observed
polymer shrinkage.

To unravel the influence higher-order multipole flow fields, we
currently perform mesoscale hydrodynamic simulations of short
linear chains of connected squirmers (monomers).>2 Preliminary
results of squirmers without active stress (neutral squirmers) re-
veal a weak influence of higher-order multipoles on the poly-
mer conformations and dynamics. A markedly stronger effect
appears for monomers with finite active stress (puller/pusher),
where polymer conformational and dynamical properties depend
on the strength of higher-order multipoles. In general, the indi-
vidual multipolar contributions depend on the particular propul-
sion mechanism, and, thus, their inclusion can be essential to
capture the relevant hydrodynamic flow fields for an adequate
description of the polymer properties.

The polymer dynamics is determined by two relaxation pro-
cesses, the orientational relaxation of an active site/monomer,
and the polymer relaxation. This leads to distinct time regimes in
the polymer mean square displacement. At short times /7, yrt <
1, activity leads to a ballistic regime, with an enhanced dynamics
compared to a passive polymer. For ¢/%; < 1 < ygt, the MSD is
dominated by the internal dynamics, and a polymer-characteristic
subdiffusive regime appears. Again, activity and hydrodynamics
play a decisive role, leading to a power-law dependence with an
exponent, &' ~2/5, smaller than that of a passive hydrodynamic
polymer. In the asymptotic limit of long times, the enhanced dif-
fusive dynamics is no longer affected by the fluid motion, but
rather becomes identical to that of an ABPO-HI.

Our studies predict a substantial effect of hydrodynamic inter-
actions on the properties of active polymers. The shrinkage, even
in the presence of excluded-volume interactions, results in an en-
hanced packing, which might be important for DNA organization
within the cell nucleus8Z, The actual mechanism of DNA pack-
ing is unresolved so far, however, DNA transcription or other lo-
cal enzymatic processes, e.g., active-loop extrusion®® provide a
continuous local energy influx, and, hence, a source of nonther-
mal active noise. Moreover, hydrodynamic interactions could be
involved in the observed subdiffusive dynamics of chromosomal
loci21¥89 which is typically related to a viscoelastic?? or a frac-

single monomers to the full filament.
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tal environment?Y, Further experimental studies are necessary
to resolve the relevance of the various possible mechanisms af-
fecting the dynamics, such as hydrodynamics, confinement, and

viscoelasticity.
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