000862794 001__ 862794
000862794 005__ 20240708132735.0
000862794 037__ $$aFZJ-2019-03014
000862794 1001_ $$0P:(DE-Juel1)171464$$aPereira da Silva, Joao Gustavo$$b0$$eCorresponding author$$ufzj
000862794 1112_ $$aElectric Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities$$cTomar$$d2019-03-10 - 2019-03-15$$wPortugal
000862794 245__ $$aTHERMAL RUNAWAY, DYNAMIC STABILITY AND PROCESS CONTROL IN FLASH SINTERING
000862794 260__ $$c2019
000862794 3367_ $$033$$2EndNote$$aConference Paper
000862794 3367_ $$2DataCite$$aOther
000862794 3367_ $$2BibTeX$$aINPROCEEDINGS
000862794 3367_ $$2DRIVER$$aconferenceObject
000862794 3367_ $$2ORCID$$aLECTURE_SPEECH
000862794 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1558416706_21701$$xPlenary/Keynote
000862794 520__ $$aFlash sintering is an innovative sintering method in which a critical combination of electrical field and temperature triggers a sudden densification in seconds. Due to the nature of the process, the flash sintering conditions lead to a non-linear conductivity surge followed by current control. This work tries to answer some questions related to process control during flash sintering by using a dynamic system model-based approach. An explicit solution for the folding points in the voltage control mode is presented (Figure 1). The analytical model uses a dynamic bifurcation approach which explains why the current control mode always leads to a steady state, due to the unicity of the solution to the equations, and why different modes of flash sintering such as current-controlled or power-controlled lead to a more uniform process. The model is validated with experiments in Cerium Oxide doped with Gadolinium and Yttrium.
000862794 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862794 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
000862794 7001_ $$0P:(DE-Juel1)171807$$aCao, Chen$$b1$$ufzj
000862794 7001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b2$$ufzj
000862794 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b3$$ufzj
000862794 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000862794 909CO $$ooai:juser.fz-juelich.de:862794$$pVDB
000862794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171464$$aForschungszentrum Jülich$$b0$$kFZJ
000862794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171807$$aForschungszentrum Jülich$$b1$$kFZJ
000862794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b2$$kFZJ
000862794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b3$$kFZJ
000862794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000862794 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862794 9141_ $$y2019
000862794 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862794 980__ $$aconf
000862794 980__ $$aVDB
000862794 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862794 980__ $$aUNRESTRICTED
000862794 981__ $$aI:(DE-Juel1)IMD-2-20101013