000862799 001__ 862799
000862799 005__ 20210130001639.0
000862799 0247_ $$2doi$$a10.1088/1361-6560/aaf9e2
000862799 0247_ $$2ISSN$$a0031-9155
000862799 0247_ $$2ISSN$$a1361-6560
000862799 0247_ $$2pmid$$apmid:30566926
000862799 0247_ $$2WOS$$aWOS:000456840500002
000862799 0247_ $$2altmetric$$aaltmetric:54324966
000862799 037__ $$aFZJ-2019-03018
000862799 082__ $$a530
000862799 1001_ $$0P:(DE-Juel1)164150$$aHong, Suk-Min$$b0$$ufzj
000862799 245__ $$aDesign and evaluation of a 1 H/ 31 P double-resonant helmet coil for 3T MRI of the brain
000862799 260__ $$aBristol$$bIOP Publ.$$c2019
000862799 3367_ $$2DRIVER$$aarticle
000862799 3367_ $$2DataCite$$aOutput Types/Journal article
000862799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558361016_16477
000862799 3367_ $$2BibTeX$$aARTICLE
000862799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862799 3367_ $$00$$2EndNote$$aJournal Article
000862799 520__ $$aProton magnetic resonance imaging (MRI) can be combined with signals from non-proton nuclei (X-nuclei) to provide metabolic information. Double-resonant coils are often used for X-nuclei MR studies where the proton element is employed for scout imaging and B 0 shimming. This work describes the development of a new double-resonant coil capable of operating at both proton and X-nuclei frequencies.The proposed design extends the wheel-and-spoke coil, which allows for quadrature drive, by adding an extra ring outside the coil to achieve double-resonance. Furthermore, in order to maximise SNR by increasing the filling factor, the shape of the coil has been modified to a helmet style making it suitable for brain applications.The performance of the double-resonant helmet coil was evaluated by simulation and MR measurements. The helmet coil was successfully tuned to the 1H/31P resonance frequencies of a 3T MR scanner, with high isolation between the two quadrature ports. MR measurements of a phantom were carried out, and the averaged sensitivity of the double-resonant helmet coil over the whole phantom was found to be higher than that of the conventional double-tuned birdcage coil at both frequencies.
000862799 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000862799 588__ $$aDataset connected to CrossRef
000862799 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b1$$ufzj
000862799 7001_ $$0P:(DE-Juel1)131794$$aShah, N Jon$$b2$$ufzj
000862799 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b3$$eCorresponding author$$ufzj
000862799 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aaf9e2$$gVol. 64, no. 3, p. 035003 -$$n3$$p035003 -$$tPhysics in medicine and biology$$v64$$x1361-6560$$y2019
000862799 8564_ $$uhttps://juser.fz-juelich.de/record/862799/files/Hong_2019_Phys._Med._Biol._64_035003.pdf$$yRestricted
000862799 8564_ $$uhttps://juser.fz-juelich.de/record/862799/files/Hong_2019_Phys._Med._Biol._64_035003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862799 909CO $$ooai:juser.fz-juelich.de:862799$$pVDB
000862799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164150$$aForschungszentrum Jülich$$b0$$kFZJ
000862799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b1$$kFZJ
000862799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000862799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b3$$kFZJ
000862799 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000862799 9141_ $$y2019
000862799 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862799 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000862799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000862799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862799 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862799 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862799 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862799 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862799 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862799 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862799 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862799 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862799 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000862799 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000862799 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000862799 980__ $$ajournal
000862799 980__ $$aVDB
000862799 980__ $$aI:(DE-Juel1)INM-4-20090406
000862799 980__ $$aI:(DE-Juel1)INM-11-20170113
000862799 980__ $$aI:(DE-82)080010_20140620
000862799 980__ $$aUNRESTRICTED