000862824 001__ 862824
000862824 005__ 20210130001644.0
000862824 0247_ $$2doi$$a10.1007/s00216-018-1557-x
000862824 0247_ $$2pmid$$apmid:30617405
000862824 0247_ $$2WOS$$aWOS:000458358400013
000862824 0247_ $$2altmetric$$aaltmetric:55742487
000862824 037__ $$aFZJ-2019-03025
000862824 041__ $$aEnglish
000862824 1001_ $$0P:(DE-Juel1)166452$$aKoch, Maximilian$$b0$$eCorresponding author$$ufzj
000862824 245__ $$aQuantitative imaging of 33P in plant materials using 14C polymerreferences
000862824 260__ $$aHeidelberg$$bSpringer$$c2019
000862824 3367_ $$2DRIVER$$aarticle
000862824 3367_ $$2DataCite$$aOutput Types/Journal article
000862824 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558427935_22400
000862824 3367_ $$2BibTeX$$aARTICLE
000862824 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862824 3367_ $$00$$2EndNote$$aJournal Article
000862824 520__ $$aPhosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biologicalsystems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for insitu quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracerapplications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative mannerup to 2000 Bq cm−2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishmentof photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experimentsrevealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the coexposureof 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) andwheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plantleaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitativeimaging of 33P in biological systems and likely, thus, also for other environmental compartments.
000862824 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862824 7001_ $$0P:(DE-Juel1)165137$$aSchiedung, Henning$$b1
000862824 7001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b2$$ufzj
000862824 7001_ $$0P:(DE-Juel1)164426$$aMcGovern, Sean$$b3$$ufzj
000862824 7001_ $$0P:(DE-Juel1)129471$$aHofmann, Diana$$b4$$ufzj
000862824 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000862824 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b6$$ufzj
000862824 773__ $$0PERI:(DE-600)1459122-4$$a10.1007/s00216-018-1557-x$$n6$$p1253-1260$$tAnalytical and bioanalytical chemistry$$v411$$x0016-1152$$y2019
000862824 8564_ $$uhttps://juser.fz-juelich.de/record/862824/files/Koch2019_Article_QuantitativeImagingOf33PInPlan.pdf$$yRestricted
000862824 8564_ $$uhttps://juser.fz-juelich.de/record/862824/files/Figures_final_PP.docx$$yRestricted
000862824 8564_ $$uhttps://juser.fz-juelich.de/record/862824/files/Manuscript_final_PP.docx$$yRestricted
000862824 8564_ $$uhttps://juser.fz-juelich.de/record/862824/files/Koch2019_Article_QuantitativeImagingOf33PInPlan.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862824 909CO $$ooai:juser.fz-juelich.de:862824$$pVDB:Earth_Environment$$pVDB
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166452$$aForschungszentrum Jülich$$b0$$kFZJ
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b2$$kFZJ
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164426$$aForschungszentrum Jülich$$b3$$kFZJ
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b4$$kFZJ
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000862824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b6$$kFZJ
000862824 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862824 9141_ $$y2019
000862824 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862824 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862824 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862824 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862824 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAL BIOANAL CHEM : 2017
000862824 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862824 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862824 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862824 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862824 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862824 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862824 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862824 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862824 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862824 920__ $$lyes
000862824 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862824 980__ $$ajournal
000862824 980__ $$aVDB
000862824 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862824 980__ $$aUNRESTRICTED