001     862824
005     20210130001644.0
024 7 _ |a 10.1007/s00216-018-1557-x
|2 doi
024 7 _ |a pmid:30617405
|2 pmid
024 7 _ |a WOS:000458358400013
|2 WOS
024 7 _ |a altmetric:55742487
|2 altmetric
037 _ _ |a FZJ-2019-03025
041 _ _ |a English
100 1 _ |a Koch, Maximilian
|0 P:(DE-Juel1)166452
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Quantitative imaging of 33P in plant materials using 14C polymerreferences
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1558427935_22400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biologicalsystems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for insitu quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracerapplications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative mannerup to 2000 Bq cm−2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishmentof photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experimentsrevealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the coexposureof 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) andwheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plantleaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitativeimaging of 33P in biological systems and likely, thus, also for other environmental compartments.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Schiedung, Henning
|0 P:(DE-Juel1)165137
|b 1
700 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 2
|u fzj
700 1 _ |a McGovern, Sean
|0 P:(DE-Juel1)164426
|b 3
|u fzj
700 1 _ |a Hofmann, Diana
|0 P:(DE-Juel1)129471
|b 4
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
|u fzj
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 6
|u fzj
773 _ _ |a 10.1007/s00216-018-1557-x
|0 PERI:(DE-600)1459122-4
|n 6
|p 1253-1260
|t Analytical and bioanalytical chemistry
|v 411
|y 2019
|x 0016-1152
856 4 _ |u https://juser.fz-juelich.de/record/862824/files/Koch2019_Article_QuantitativeImagingOf33PInPlan.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862824/files/Figures_final_PP.docx
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862824/files/Manuscript_final_PP.docx
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862824/files/Koch2019_Article_QuantitativeImagingOf33PInPlan.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:862824
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166452
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL BIOANAL CHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21