000862841 001__ 862841 000862841 005__ 20240711113806.0 000862841 0247_ $$2doi$$a10.1016/j.nme.2019.100682 000862841 0247_ $$2Handle$$a2128/22208 000862841 0247_ $$2WOS$$aWOS:000500930800016 000862841 037__ $$aFZJ-2019-03040 000862841 082__ $$a624 000862841 1001_ $$0P:(DE-Juel1)8998$$aMatveev, D.$$b0$$eCorresponding author$$ufzj 000862841 245__ $$aModeling of H/D isotope-exchange in crystalline beryllium 000862841 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019 000862841 3367_ $$2DRIVER$$aarticle 000862841 3367_ $$2DataCite$$aOutput Types/Journal article 000862841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558428219_22401 000862841 3367_ $$2BibTeX$$aARTICLE 000862841 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862841 3367_ $$00$$2EndNote$$aJournal Article 000862841 520__ $$aA reaction-diffusion model with surface occupation dependent desorption [D. Matveev et al., Nucl. Instr. Meth. B 430 (2018) 23–30] has been updated to handle multiple hydrogen species to simulate hydrogen/deuterium isotope-exchange experiments performed on polycrystalline beryllium samples under ultra-high vacuum laboratory conditions. In the experiments subsequent exposures of a sample to hydrogen and deuterium ion beams in direct and reverse implantation order were followed by thermal desorption spectroscopy measurements under a constant heating rate of 0.7 K/s. The recorded signals of masses 2 to 4 (H2, HD and D2) indicate that the second implanted isotope dominates clearly the low temperature release stage ( ≈ 450 K), while both isotopes show a comparable contribution to the high temperature desorption stage ( ≈ 700 K) with only minor effect of the implantation order attributed to a slightly deeper penetration of deuterium compared to hydrogen. Simulations of the implantation and subsequent thermal desorption of hydrogen isotopes are performed to assess the atomic processes behind the isotope-exchange. Simulations were performed under the assumption that the low temperature release stage is attributed to hydrogen/deuterium atoms retained on effective open surfaces (e.g. interconnected porosity) represented in the simulations by a surface with an effective surface area exceeding the nominal exposed surface area by a factor up to 100. Kinetic de-trapping from vacancies with multiple trapping levels and enhanced desorption at surface coverages close to saturation are addressed in the model as possible mechanisms promoting the isotope-exchange. Simulation results suggest the applicability of the model to describe isotope-exchange processes in crystalline beryllium and give a qualitative explanation of the observed experimental facts. 000862841 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000862841 588__ $$aDataset connected to CrossRef 000862841 7001_ $$0P:(DE-Juel1)164146$$aHansen, P.$$b1$$ufzj 000862841 7001_ $$0P:(DE-Juel1)158050$$aDittmar, T.$$b2$$ufzj 000862841 7001_ $$0P:(DE-Juel1)130066$$aKoslowski, H. R.$$b3$$ufzj 000862841 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b4$$ufzj 000862841 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.100682$$gVol. 20, p. 100682 -$$p100682 -$$tNuclear materials and energy$$v20$$x2352-1791$$y2019 000862841 8564_ $$uhttps://juser.fz-juelich.de/record/862841/files/1-s2.0-S2352179118302655-main.pdf$$yOpenAccess 000862841 8564_ $$uhttps://juser.fz-juelich.de/record/862841/files/1-s2.0-S2352179118302655-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862841 909CO $$ooai:juser.fz-juelich.de:862841$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000862841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8998$$aForschungszentrum Jülich$$b0$$kFZJ 000862841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164146$$aForschungszentrum Jülich$$b1$$kFZJ 000862841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158050$$aForschungszentrum Jülich$$b2$$kFZJ 000862841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130066$$aForschungszentrum Jülich$$b3$$kFZJ 000862841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b4$$kFZJ 000862841 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000862841 9141_ $$y2019 000862841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862841 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000862841 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000862841 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index 000862841 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000862841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862841 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862841 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review 000862841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862841 920__ $$lyes 000862841 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000862841 9801_ $$aFullTexts 000862841 980__ $$ajournal 000862841 980__ $$aVDB 000862841 980__ $$aUNRESTRICTED 000862841 980__ $$aI:(DE-Juel1)IEK-4-20101013 000862841 981__ $$aI:(DE-Juel1)IFN-1-20101013