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Abstract Cirrus clouds have a large influence on the Earth’s climate and anthropogenic activities such as
aviation can alter their properties. Besides the formation of contrails, indirect effects on naturally occurring
cirrus like increased heterogeneous freezing due to exhaust soot particles are discussed in the literature.
However, hardly any observational study exists. In this work we present cirrus optical properties measured by
an airborne lidar over Europe during the Midlatitude Cirrus experiment (ML-CIRRUS). One half of the cloud
cases showed elevated depolarization ratios with a mode difference of 10 percentage points indicating
differences in the clouds microphysical properties. Their origin can be traced back to highly frequented air
traffic regions, and they show lower in-cloud ice supersaturations. Our analysis reveals no influence of
embedded contrails and temperature. These results could be explained by an indirect aerosol effect where
heterogeneous freezing is caused by aviation exhaust particles.

Plain Language Summary Civil airplanes emit exhaust gases and soot into the atmosphere, which
can influence the Earth’s climate in several ways. One possibility could be that emitted soot particles alter
the formation of ice clouds, which has a potentially high climate impact. However, observational studies of
this process are sparse. In this work we present ice clouds measured above Europe by an airborne remote
sensing instrument. One group of clouds features elevated depolarization ratios implying altered crystal
habits. It also shows lower ice supersaturation indicating a modified ice formation. We demonstrate that this
is not caused by condensation trails present inside the clouds, by temperature, or by the dynamical state of
the atmosphere. However, these clouds had formed in air that stemmed from highly frequented aviation
corridors. Thus, our observations could be the first traces of this indirect process.

1. Introduction

Global mobility is gaining an increasing importance in human society. As a consequence, air traffic volume
showed annual growth rates of more than 4% in the last years and is predicted to do so in the coming dec-
ades (ICAO “Long-Term Traffic Forecasts” 2016). This leaves geosciences with the urgent task to quantify the
numerous aviation impacts on climate (Lee et al., 2009).

Radiative forcing (RF) results from direct engine emissions in the upper troposphere (Lund et al., 2017) and
from contrails that form under suitable conditions (Burkhardt et al., 2010). In the last years, a lot of research
effort has been dedicated to measuring and understanding contrails (Heymsfield et al., 2010; Iwabuchi et al.,
2012; Kärcher et al., 2015; Schumann et al., 2017; Voigt et al., 2011) and to determining the climatic effect that
arises from their increasing occurrence (Burkhardt & Kärcher, 2011).

Contrails also alter the properties of cirrus clouds. Tesche et al. (2016) studied contrail formation in preexisting
cirrus. They analyzed satellite lidar measurements and could show that embedded contrails cause an increase
in cloud optical thickness inside individual flight tracks compared to adjacent parts of the cloud.

The total RF from contrails is small compared to that of natural ice clouds. Therefore, indirect aviation effects
that alter the properties of natural cirrus can potentially have a high climatic impact. Jensen and Toon (1997)
suggested already two decades ago that aircraft exhaust particles may act as efficient ice nuclei leading to
more heterogeneous freezing in polluted regions.

A number of modeling studies simulated this indirect aerosol effect (Gettelman & Chen, 2013; Hendricks et al.,
2005; Kärcher et al., 2007; Zhou & Penner, 2014).Their estimations of the radiative impact provide
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contradicting results that range from no statistical effect to a range between �0.35 and 0.09 Wm�2

(Gettelman & Chen, 2013; Zhou & Penner, 2014). These studies suffer from huge uncertainties that stem from
a lack of in situ observations that could help restrict model scenarios. Still, this effect may potentially alter cir-
rus properties in large areas of the globe and therefore could cause RF that exceeds that of contrails.

To our knowledge, only two field campaign studies tried to investigate this indirect effect. Ström and Ohlsson
(1998) examined airborne in situ measurements and found increased ice crystal number densities in confined
regions inside cirrus clouds that also showed elevated black carbon concentrations. This was confirmed by
Kristensson et al. (2000). They found reduced effective ice diameters and therefore increased number densi-
ties during the same campaign. However, it remains unclear whether their observations were caused by het-
erogeneous nucleation on exhaust particles, as they could also be interpreted as the direct effect of
embedded contrails on cirrus clouds.

In our work, we present cirrus particle linear depolarization ratios (PLDRs) measured with an airborne high-
spectral-resolution lidar during the ML-CIRRUS campaign 2014 over Europe. PLDR is a well-defined optical
property that can be used to retrieve information on ice habit from lidar measurements (Del Guasta et al.,
1998; Noel et al., 2002; Schnaiter et al., 2012). When linearly polarized light is scattered by atmospheric ice
crystals, reflections at internal facets can lead to skew ray paths that result in a change of polarization. The
strength of this effect can be evaluated by analyzing the backscattered light, splitting it into the polarization
components perpendicular and parallel to the incident light. PLDR is defined as the power ratio of both com-
ponents and therefore mainly determined by the precise crystal shape.

Columnar ice crystals, often found at higher altitudes, are expected to show higher PLDR than plate-like crys-
tals that are more dominant at lower altitudes (Noel et al., 2006). However, multiple crystal habits could lead
to the same PLDR. A satellite-based study determined a global averaged depolarization ratio of 35% (Sassen
& Zhu, 2009). In the clouds investigated during the ML-CIRRUS campaign, we find a strong bimodal PLDR dis-
tribution with a mode difference of about 10 percentage points and analyze this shift in the context of a pos-
sible indirect aerosol effect from aviation.

2. Methods

In spring 2014, the ML-CIRRUS campaign was conducted with the goal to study cirrus properties in meteor-
ological regimes typical for midlatitudes, to observe contrail cirrus, and to investigate differences between
anthropogenic and natural cirrus. For this, the German High Altitude and Long Range Research Aircraft
(HALO) was equipped with a combined in situ and remote sensing instrumentation (Voigt et al., 2017).
Flight planning was guided by meteorological forecasts and advanced model predictions of cirrus and con-
trails (Schumann, 2012; Schumann & Graf, 2013). The flights cover the whole range of the midlatitudes from
35°N to 60°N and from the Atlantic Ocean (14°W) to central Europe (14°E). More details on the flights, instru-
mentation, flight planning, and forecast products can be found in Voigt et al. (2017, their Table 3).

The high-spectral-resolution and differential absorption lidar WALES (derived from WAter vapor Lidar
Experiment in Space) aboard HALO is capable of measuring backscatter ratio (BSR) at 532 and 1,064 nm,
PLDR at 532 nm, and water vapor (WV) concentration, with a high vertical resolution. A definition of PLDR
and a description of the system can be found in Esselborn et al. (2008), PLDR is their δa(r), and Wirth et al.
(2009). For determining PLDR, we employed an advanced, two-angle ±45° calibration scheme
(Freudenthaler et al., 2009), achieving an absolute accuracy of 5 percentage points at typical cirrus PLDR values.

In order to exclude liquid and mixed phase clouds and aerosol layers from the data, we only consider mea-
surements at temperatures below 235 K and above a BSR threshold of 3, respectively. The BSR threshold was
determined after carefully inspecting all flight legs for aerosol layers, and we found our further analysis to be
only weakly dependent on the exact choice of BSR threshold within the range from 2 to 25.

From measured WV and model temperature (6-hourly analysis data from ECMWF (European Centre for
Medium-Range Weather Forecasts)), we determine RHi using the parameterization for WV saturation by
Murphy and Koop (2005). This approach was demonstrated and validated by Groß et al. (2014).
Calculating RHi inside of cirrus from model temperature could potentially lead to inaccuracies, as tem-
perature fluctuations might not be properly resolved. However, the resulting RHi distributions feature
the same positively skewed shape that was also found in in situ measurements of cold cirrus clouds,
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for example, during the INCA campaign and the MOZAIC project (Ovarlez et al., 2002; Spichtinger et al.,
2004). Therefore, we are confident that this method is well suited for our analysis.

We also consider the origin of the air masses the clouds formed in, by examining 24-hr backward trajectories.
They are calculated on horizontal wind data (ECMWF reanalysis Era-Interim, 1° by 1° resolution) using diabatic
heating rates for vertical transport with the trajectory module of CLaMS (McKenna et al., 2002). The starting
points of these trajectories are distributed over the lidar cross section with a temporal resolution of 12 s
(about 2.4 km) and a vertical resolution of 150 m. The cloud ice water content (IWC) is interpolated from
the reanalysis onto the trajectory paths.

3. Observations

During 10 campaign missions, cirrus clouds were measured by lidar. The mission flights took place on differ-
ent days and in different air masses; therefore, these observations can be seen as statistically independent
from each other. The measured vertical cloud cross sections range from 73 km2 (M12) to 1477 km2 (M7).

Looking at the PLDR distributions inside these clouds, two groups can be identified (Figure 1). The distribu-
tions in the upper row (M4, M7, M10, M12, and M14) show significantly higher PLDR than distributions in the
lower row, with values up to 65% and modes and medians above 45%. Most of the upper row distributions
also show very little depolarization below 30%. In the lower row (M5, M6, M8, M9, and M11), distributions
show sharp cutoffs above 45% with modes below 45% and medians below 41%. Most of them have consid-
erable cloud fractions with depolarizations below 30%. We refer to these two groups as “PLDR high” and
“PLDR low.” The two distributions on the right are the averages over the five distributions to the left in each
row. They form two separate modes with a mode difference of 10%. Their medians (means) are located at
38.4% (37.5%) and 48.7% (47.2%), and they have standard deviations of 6.3% and 7.2%, respectively.

We investigate the temperature dependence of PLDR by calculating the median of PLDR measurements
in 1-K temperature bins for every mission (Figure 2a). PLDR high and PLDR low cases show a negative
trend with lower PLDR at higher temperatures. This is a well-known feature of cirrus clouds that is typi-
cally explained by the dominance of different ice shapes at different temperatures (columnar particles at
higher altitudes and plate-like particles at lower altitudes; Del Guasta & Vallar, 2003; Sassen & Benson,
2001; Um et al., 2015). However, we find an offset in PLDR between the two groups in the entire tem-
perature range from 235 to 207 K.

In Figure 2b, we plot the histogram of RHi inside PLDR high and PLDR low clouds. They are calculated by
averaging over five normalized distributions for each group. This ensures that the resulting histogram is
weighted by the number of independent observations rather than by the cross section of the clouds.
PLDR high clouds reach lower supersaturations and have a supersaturated fraction of 30%, whereas
clouds in PLDR low have a supersaturated fraction of 41%. We verified the significance of this finding
by employing a statistical resampling method: When randomly choosing two groups of five cases each,
from the 10 observations and calculating their RHi distributions as in Figure 2b, the probability to

Figure 1. Histogram of particle linear depolarization ratios (PLDRs) inside ice clouds (BSR > 3, T < 235 K) for 10 mission
flights and averaged histograms of the upper row (PLDR high) and lower row (PLDR low). Values above 45% are high-
lighted in black, medians are marked by a triangle, and n gives the number of lidar data points. BSR = backscatter ratio.
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observe a difference in the supersaturated fraction of 11 percentage points and more is only 3.7%. This
illustrates that the found raised PLDR distributions are linked to lower supersaturations in the clouds.

4. Discussion

The differences in PLDR and RHi, found in our observations, raise the question what the responsible processes
might be. PLDR is mainly determined by ice crystal shape, which is dependent on the temperature, supersa-
turation, and potentially the availability of ice nuclei during ice formation. The fact that we find specific cloud
types like cirrus forming in the outflow of warm conveyor belts (M5, M10, and M14) or cirrus affected by
embedded young contrails (M4, M7, M11, and M12) in both groups indicates that the large-scale meteorolo-
gical situation and direct impacts from aviation are not the decisive factors in producing the differences
in PLDR.

However, lower supersaturations in PLDR high cases could be a sign of more frequent heterogeneous freez-
ing. For example, the presence of an additional type of ice nuclei would lead to freezing at its specific freezing
threshold (Hoose & Möhler, 2012). This would deplete the available WV resulting in a smaller chance to reach
supersaturations exceeding this threshold. As freezing at lower RHi is expected to influence ice habits (Bailey
& Hallett, 2008; Schnaiter et al., 2016), this could influence the clouds PLDR. In addition, it cannot be ruled out
that the shape of the ice nuclei and the location and distribution of nucleation sites on the aerosol particle
could lead to preferred directions and geometries of ice growth.

As such findings have not been anticipated during the campaign planning and execution, unfortunately, no
in situ measurements of the aerosol load at the location and time of cloud formation are available. Therefore,
we resort to 24-hr backward trajectory calculations in order to learnmore about possible sources of ice nuclei.
One representative trajectory for every mission is plotted in Figure 3. The air masses stay at pressures
between 230 and 380 hPa within the investigated time window. Trajectories from the Atlantic Ocean and
the Iberian Peninsula (M4, M7, M8, M9, M11, M12, and M14) are higher in the atmosphere at pressures below
320 hPa. Those stemming from the Mediterranean Sea and North Africa show pressures above 300 hPa.
Typical cruise altitudes of aircrafts over the North Atlantic lie at 29000 ft (315 hPa) and above. Over the main-
land aviation emissions happen also at lower altitudes during ascent and descent from and to the airports.

The PLDR high clouds M4, M12, and M14 formed in a very busy air traffic corridor connecting Central
Europe with North America. In contrast, air masses in the PLDR low cases M8 and M9 originate from a
more southern part of the Atlantic Ocean. A comparison with the distribution of aircraft emissions (see
Stettler et al., 2013) reveals substantially lower emissions in this area.

The trajectories for M7 and M11 look very similar at the first glance; however, M11 reaches its maximum IWC
(star) already at the North African coast. Any emissions along the trajectory after that point might not influ-
ence the cloud, as no substantial further nucleation is expected. M7 reaches its maximum IWC over France,
and its trajectory lies almost exactly along the air corridor from Central Europe to Madrid, the Canary

Figure 2. (a) Temperature dependence of particle linear depolarization ratio (PLDR) in 1-K temperature bins. Shadings give
the envelope of median curves for individual missions in PLDR high and PLDR low. Solid lines are averaged median curves.
(b) Relative frequency of relative humidity over ice (RHi) averaged over cases in PLDR high and PLDR low.
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Islands, and South America (see Stettler et al., 2013). Thus, the PLDR high case M7 might be affected by avia-
tion emissions more heavily than the PLDR low case M11.

This co-occurrence of raised PLDR values and aviation emissions is less obvious for the cases M5, M6, and
M10, as all three originate from the relatively “clean” region over the Mediterranean Sea and North Africa.
Still the PLDR low cases stem from a more southern, and therefore, “cleaner” area and the PLDR high case
reaches maximum IWC more closely to the European mainland in the more emission affected region of
Northern Italy. This analysis shows that aviation cannot be excluded as the source of ice nuclei.

Besides the existence of ice nuclei, the small-scale dynamics of the air during ice nucleation is able to control
microphysical parameters such as ice crystal number density and size (Kärcher, 2017). The updraft velocity
influences temperature and relative humidity and could therefore indirectly impact the habit of forming
ice crystals. As studies investigating the impact of vertical air motion concentrate mostly on ice number den-
sity and size, the influence on ice crystal shape however remains unclear.

5. Conclusions

During the ML-CIRRUS campaign 2014, cirrus clouds were measured by lidar over Europe with PLDR values
that are on average 10 percentage points higher than in the other clouds. These altered optical properties
come along with significantly lower supersaturations inside the clouds that may indicate more frequent het-
erogeneous freezing. A trajectory analysis revealed that the formation regions of the affected cirrus clouds lie
in areas of high aviation emissions over the North Atlantic and the European mainland. Our investigations
show that the possibility of an indirect aviation effect must not be neglected. Heterogeneous freezing on
emitted exhaust particles could explain the lower supersaturations and higher PLDR that we found.

The aim of this work is to document the unexpected shift in PLDR and to raise attention to the possible influ-
ence of an indirect aviation effect. In our data, five out of 10 statistically independent cloud cases, measured
during a period of 17 days, show elevated PLDR. The clouds dominated large areas over Europe at the time of
their measurement. The fraction might be biased by the employed flight planning strategies, as three of the
affected flights were dedicated to investigating contrail cirrus, and therefore, the flights took place in high air
traffic regions. Nevertheless, in at least 29% of the days of the campaign this cloud type could be found
over Europe.

The ML-CIRRUS research flights did not focus on indirect effects; therefore, crucial information at the cirrus
formation regions was not explored in detail. For a deeper investigation, a mission strategy could include
the characterization of the aerosol load in cirrus formation regions, the measurement of microphysical
and optical properties of the emerging clouds, the measurement of the supersaturation and updraft velocity
distribution during ice nucleation, and mission accompanying episodic modeling of aerosol and clouds that
resolves daily and even diurnal changes in aviation emission patterns.

With this information, future flight campaigns can provide in-depth observational studies on the extent of the
indirect aerosol effect on cirrus clouds.

Figure 3. Location of measured cirrus clouds (dots), maximum cloud ice water content (stars), and the course of calculated
backward trajectories for particle linear depolarization ratio (PLDR) high cases (black) and PLDR low cases (white).
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