000862877 001__ 862877
000862877 005__ 20240712100840.0
000862877 0247_ $$2doi$$a10.5194/acp-19-6007-2019
000862877 0247_ $$2ISSN$$a1680-7316
000862877 0247_ $$2ISSN$$a1680-7324
000862877 0247_ $$2Handle$$a2128/22217
000862877 0247_ $$2WOS$$aWOS:000467412800001
000862877 0247_ $$2altmetric$$aaltmetric:60059268
000862877 037__ $$aFZJ-2019-03064
000862877 082__ $$a550
000862877 1001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b0$$eCorresponding author
000862877 245__ $$aLagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe
000862877 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000862877 3367_ $$2DRIVER$$aarticle
000862877 3367_ $$2DataCite$$aOutput Types/Journal article
000862877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562058533_18411
000862877 3367_ $$2BibTeX$$aARTICLE
000862877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862877 3367_ $$00$$2EndNote$$aJournal Article
000862877 520__ $$aWe have performed backward trajectory calculations and simulations with the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) for two succeeding monsoon seasons using artificial tracers of air mass origin. With these tracers we trace back the origin of young air masses (age <6 months) at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe (6 months < age <18 months) during summer 2008. The occurrence of young air masses (<6 months) at the top of the Asian monsoon anticyclone up to ∼460 K is in agreement with satellite measurements of chlorodifluoromethane (HCFC-22) by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. HCFC-22 can be considered as a regional tracer for continental eastern Asia and the Middle East as it is mainly emitted in this region.Our findings show that the transport of air masses from boundary layer sources in the region of the Asian monsoon into the tropical pipe occurs in three distinct steps. First, very fast uplift in “a convective range” transports air masses up to 360 K potential temperature within a few days. Second, air masses are uplifted from about 360 K up to 460 K within “an upward spiralling range” within a few months. The large-scale upward spiral extends from northern Africa to the western Pacific. The air masses are transported upwards by diabatic heating with a rate of up to 1–1.5 K per day, implying strong vertical transport above the Asian monsoon anticyclone. Third, transport of air masses occurs within the tropical pipe up to 550 K associated with the large-scale Brewer–Dobson circulation within ∼1 year.In the upward spiralling range, air masses are uplifted by diabatic heating across the (lapse rate) tropopause, which does not act as a transport barrier, in contrast to the extratropical tropopause. Further, in the upward spiralling range air masses from inside the Asian monsoon anticyclone are mixed with air masses convectively uplifted outside the core of the Asian monsoon anticyclone in the tropical adjacent regions. Moreover, the vertical transport of air masses from the Asian monsoon anticyclone into the tropical pipe is weak in terms of transported air masses compared to the transport from the monsoon anticyclone into the northern extratropical lower stratosphere. Air masses from the Asian monsoon anticyclone (India/China) contribute a minor fraction to the composition of air within the tropical pipe at 550 K (6 %), and the major fractions are from Southeast Asia (16 %) and the tropical Pacific (15 %).
000862877 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000862877 588__ $$aDataset connected to CrossRef
000862877 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000862877 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b2
000862877 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b3
000862877 7001_ $$0P:(DE-Juel1)171206$$aHanumanthu, Sreeharsha$$b4
000862877 7001_ $$00000-0002-4812-5000$$aLi, Dan$$b5
000862877 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6
000862877 7001_ $$00000-0003-2883-6873$$aStiller, Gabriele P.$$b7
000862877 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-6007-2019$$gVol. 19, no. 9, p. 6007 - 6034$$n9$$p6007 - 6034$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000862877 8564_ $$uhttps://juser.fz-juelich.de/record/862877/files/invoice_Helmholtz-PUC-2019-44%20.pdf
000862877 8564_ $$uhttps://juser.fz-juelich.de/record/862877/files/acp-19-6007-2019.pdf$$yOpenAccess
000862877 8564_ $$uhttps://juser.fz-juelich.de/record/862877/files/acp-19-6007-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862877 8564_ $$uhttps://juser.fz-juelich.de/record/862877/files/invoice_Helmholtz-PUC-2019-44%20.pdf?subformat=pdfa$$xpdfa
000862877 8767_ $$8Helmholtz-PUC-2019-44$$92019-07-01$$d2019-07-02$$eAPC$$jZahlung erfolgt$$pacp-2018-724
000862877 909CO $$ooai:juser.fz-juelich.de:862877$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b0$$kFZJ
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b2$$kFZJ
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b3$$kFZJ
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171206$$aForschungszentrum Jülich$$b4$$kFZJ
000862877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
000862877 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000862877 9141_ $$y2019
000862877 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862877 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862877 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862877 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000862877 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862877 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862877 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862877 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862877 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862877 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000862877 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862877 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862877 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000862877 9801_ $$aFullTexts
000862877 980__ $$ajournal
000862877 980__ $$aVDB
000862877 980__ $$aI:(DE-Juel1)IEK-7-20101013
000862877 980__ $$aUNRESTRICTED
000862877 980__ $$aAPC
000862877 981__ $$aI:(DE-Juel1)ICE-4-20101013