000862889 001__ 862889
000862889 005__ 20240711085600.0
000862889 0247_ $$2doi$$a10.1038/s41598-019-39758-2
000862889 0247_ $$2Handle$$a2128/22246
000862889 0247_ $$2pmid$$apmid:30824737
000862889 0247_ $$2WOS$$aWOS:000459983900080
000862889 037__ $$aFZJ-2019-03072
000862889 082__ $$a600
000862889 1001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b0$$eCorresponding author
000862889 245__ $$aCrystal structure investigation of La5.4W1−yMoyO12−δ for gas separation by high-resolution transmission electron microscopy
000862889 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000862889 3367_ $$2DRIVER$$aarticle
000862889 3367_ $$2DataCite$$aOutput Types/Journal article
000862889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559808020_19825
000862889 3367_ $$2BibTeX$$aARTICLE
000862889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862889 3367_ $$00$$2EndNote$$aJournal Article
000862889 520__ $$aLanthanum tungstate (LWO)    and   LWO   with   20  at.%   and   35  at.%   molybdenum substituting tungsten were   prepared by  the  Pechini    method.     Phase    purity    and   successful Mo  substitution inside    these   dense LWO   membrane materials were   confirmed by  conventional and   high   resolution transmission electron microscopy techniques. The   split   of  La2/W2 site   by  around    0.3  Å  was   proven.    Extra   reflections show   up in  the  diffraction patterns     from   Mo-substituted LWO,   and   together with   simulations, these   reflections were   recognized as  forbidden reflections in  a  non-substituted LWO   system,    while   the  extinction rules are  broken    by  Mo  substitution due   to  the  different     scattering factors    of  W  and   Mo.   Energy-dispersive X-ray   chemical mapping allowed    direct   visualization of  individual atomic    columns, and   revealed     that   all Mo is located at the W1 sites   in  the  Mo-substituted LWO.   Moreover, the  diffuse    scattering in  diffraction patterns     provides     direct   evidence of  short   range   clustering of  oxygen    vacancies and   could   be  further related    to  the  oxygen    conduction of  the  LWO   memb
000862889 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862889 588__ $$aDataset connected to CrossRef
000862889 7001_ $$0P:(DE-Juel1)144923$$aDeibert, W.$$b1$$ufzj
000862889 7001_ $$0P:(DE-Juel1)129617$$aIvanova, M. E.$$b2
000862889 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b3$$ufzj
000862889 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b4$$ufzj
000862889 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-39758-2$$gVol. 9, no. 1, p. 3274$$n1$$p3274$$tScientific reports$$v9$$x2045-2322$$y2019
000862889 8564_ $$uhttps://juser.fz-juelich.de/record/862889/files/s41598-019-39758-2.pdf$$yOpenAccess
000862889 8564_ $$uhttps://juser.fz-juelich.de/record/862889/files/s41598-019-39758-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862889 909CO $$ooai:juser.fz-juelich.de:862889$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862889 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174238$$aRWTH Aachen$$b0$$kRWTH
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b0$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b2$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b3$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000862889 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862889 9141_ $$y2019
000862889 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862889 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862889 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862889 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862889 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862889 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000862889 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862889 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862889 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862889 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862889 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862889 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862889 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862889 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862889 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862889 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862889 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862889 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862889 920__ $$lyes
000862889 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862889 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000862889 9801_ $$aFullTexts
000862889 980__ $$ajournal
000862889 980__ $$aVDB
000862889 980__ $$aUNRESTRICTED
000862889 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862889 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000862889 981__ $$aI:(DE-Juel1)IMD-2-20101013