000862889 001__ 862889
000862889 005__ 20240711085600.0
000862889 0247_ $$2doi$$a10.1038/s41598-019-39758-2
000862889 0247_ $$2Handle$$a2128/22246
000862889 0247_ $$2pmid$$apmid:30824737
000862889 0247_ $$2WOS$$aWOS:000459983900080
000862889 037__ $$aFZJ-2019-03072
000862889 082__ $$a600
000862889 1001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b0$$eCorresponding author
000862889 245__ $$aCrystal structure investigation of La5.4W1−yMoyO12−δ for gas separation by high-resolution transmission electron microscopy
000862889 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000862889 3367_ $$2DRIVER$$aarticle
000862889 3367_ $$2DataCite$$aOutput Types/Journal article
000862889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559808020_19825
000862889 3367_ $$2BibTeX$$aARTICLE
000862889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862889 3367_ $$00$$2EndNote$$aJournal Article
000862889 520__ $$aLanthanum tungstate (LWO) and LWO with 20 at.% and 35 at.% molybdenum substituting tungsten were prepared by the Pechini method. Phase purity and successful Mo substitution inside these dense LWO membrane materials were confirmed by conventional and high resolution transmission electron microscopy techniques. The split of La2/W2 site by around 0.3 Å was proven. Extra reflections show up in the diffraction patterns from Mo-substituted LWO, and together with simulations, these reflections were recognized as forbidden reflections in a non-substituted LWO system, while the extinction rules are broken by Mo substitution due to the different scattering factors of W and Mo. Energy-dispersive X-ray chemical mapping allowed direct visualization of individual atomic columns, and revealed that all Mo is located at the W1 sites in the Mo-substituted LWO. Moreover, the diffuse scattering in diffraction patterns provides direct evidence of short range clustering of oxygen vacancies and could be further related to the oxygen conduction of the LWO memb
000862889 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862889 588__ $$aDataset connected to CrossRef
000862889 7001_ $$0P:(DE-Juel1)144923$$aDeibert, W.$$b1$$ufzj
000862889 7001_ $$0P:(DE-Juel1)129617$$aIvanova, M. E.$$b2
000862889 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b3$$ufzj
000862889 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b4$$ufzj
000862889 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-39758-2$$gVol. 9, no. 1, p. 3274$$n1$$p3274$$tScientific reports$$v9$$x2045-2322$$y2019
000862889 8564_ $$uhttps://juser.fz-juelich.de/record/862889/files/s41598-019-39758-2.pdf$$yOpenAccess
000862889 8564_ $$uhttps://juser.fz-juelich.de/record/862889/files/s41598-019-39758-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862889 909CO $$ooai:juser.fz-juelich.de:862889$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862889 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174238$$aRWTH Aachen$$b0$$kRWTH
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b0$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b2$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b3$$kFZJ
000862889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000862889 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862889 9141_ $$y2019
000862889 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862889 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862889 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862889 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862889 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862889 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000862889 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862889 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862889 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862889 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862889 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862889 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862889 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862889 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862889 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862889 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862889 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862889 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862889 920__ $$lyes
000862889 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862889 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000862889 9801_ $$aFullTexts
000862889 980__ $$ajournal
000862889 980__ $$aVDB
000862889 980__ $$aUNRESTRICTED
000862889 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862889 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000862889 981__ $$aI:(DE-Juel1)IMD-2-20101013