| 001 | 862901 | ||
| 005 | 20210130001712.0 | ||
| 024 | 7 | _ | |a 10.1088/1367-2630/ab13ba |2 doi |
| 024 | 7 | _ | |a 2128/22504 |2 Handle |
| 024 | 7 | _ | |a altmetric:60014915 |2 altmetric |
| 024 | 7 | _ | |a WOS:000467288400009 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-03077 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Strake, Julius |0 P:(DE-Juel1)178902 |b 0 |u fzj |
| 245 | _ | _ | |a Non-local impact of link failures in linear flow networks |
| 260 | _ | _ | |a [London] |c 2019 |b IOP73379 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1563429981_18562 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The failure of a single link can degrade the operation of a supply network up to the point of complete collapse. Yet, the interplay between network topology and locality of the response to such damage is poorly understood. Here, we study how topology affects the redistribution of flow after the failure of a single link in linear flow networks with a special focus on power grids. In particular, we analyze the decay of flow changes with distance after a link failure and map it to the field of an electrical dipole for lattice-like networks. The corresponding inverse-square law is shown to hold for all regular tilings. For sparse networks, a long-range response is found instead. In the case of more realistic topologies, we introduce a rerouting distance, which captures the decay of flow changes better than the traditional geodesic distance. Finally, we are able to derive rigorous bounds on the strength of the decay for arbitrary topologies that we verify through extensive numerical simulations. Our results show that it is possible to forecast flow rerouting after link failures to a large extent based on purely topological measures and that these effects generally decay with distance from the failing link. They might be used to predict links prone to failure in supply networks such as power grids and thus help to construct grids providing a more robust and reliable power supply. |
| 536 | _ | _ | |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) |0 G:(DE-HGF)POF3-153 |c POF3-153 |f POF III |x 0 |
| 536 | _ | _ | |a ES2050 - Energie Sytem 2050 (ES2050) |0 G:(DE-HGF)ES2050 |c ES2050 |x 1 |
| 536 | _ | _ | |a VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014) |0 G:(HGF)VH-NG-1025_20112014 |c VH-NG-1025_20112014 |x 2 |
| 536 | _ | _ | |a CoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017) |0 G:(Grant)PIK_082017 |c PIK_082017 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Kaiser, Franz |0 P:(DE-Juel1)176610 |b 1 |
| 700 | 1 | _ | |a Basiri, Farnaz |0 P:(DE-Juel1)168456 |b 2 |
| 700 | 1 | _ | |a Ronellenfitsch, Henrik |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Witthaut, Dirk |0 P:(DE-Juel1)162277 |b 4 |e Corresponding author |
| 773 | _ | _ | |a 10.1088/1367-2630/ab13ba |g Vol. 21, no. 5, p. 053009 - |0 PERI:(DE-600)1464444-7 |n 5 |p 053009 - |t New journal of physics |v 21 |y 2019 |x 1367-2630 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/862901/files/Strake_2019_NonLocalImpatcs_NewJPhys.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/862901/files/Strake_2019_NonLocalImpatcs_NewJPhys.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:862901 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178902 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176610 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)162277 |
| 913 | 1 | _ | |a DE-HGF |l Technologie, Innovation und Gesellschaft |1 G:(DE-HGF)POF3-150 |0 G:(DE-HGF)POF3-153 |2 G:(DE-HGF)POF3-100 |v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEW J PHYS : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-STE-20101013 |k IEK-STE |l Systemforschung und Technologische Entwicklung |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-STE-20101013 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|