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Abstract

The failure of a single link can degrade the operation of a supply network up to the point of complete
collapse. Yet, the interplay between network topology and locality of the response to such damage is
poorly understood. Here, we study how topology affects the redistribution of flow after the failure ofa
single link in linear flow networks with a special focus on power grids. In particular, we analyze the
decay of flow changes with distance after a link failure and map it to the field of an electrical dipole for
lattice-like networks. The corresponding inverse-square law is shown to hold for all regular tilings. For
sparse networks, along-range response is found instead. In the case of more realistic topologies, we
introduce a rerouting distance, which captures the decay of flow changes better than the traditional
geodesic distance. Finally, we are able to derive rigorous bounds on the strength of the decay for
arbitrary topologies that we verify through extensive numerical simulations. Our results show that it is
possible to forecast flow rerouting after link failures to a large extent based on purely topological
measures and that these effects generally decay with distance from the failing link. They might be used
to predict links prone to failure in supply networks such as power grids and thus help to construct
grids providing a more robust and reliable power supply.

1. Introduction

The robust operation of supply networks is essential for the function of complex systems across scales and
disciplines. Almost all of our technical and economical infrastructure depends on the reliable operation of the
electric power grid [1, 2]. Biological organisms distribute water and nutrients via their vascular networks, for
instance in plantleaves [3], the human and animal circulatory system [4], or in protoplasmic veins of certain
slime molds [5]. Huge amounts of money and assets are exchanged through a complex financial network [6].
Structural damages to such networks can have catastrophic consequences such as a stroke, a power outage or a
major economic crisis.

In power grids, large scale outages are typically triggered by the failure of a single transmission or generation
element [7—11]. The outages in the United States in 2003, Italy in 2003 and Western Europe in 2006 are very well
documented and provide a detailed insight into the dynamics of a large scale network failure [12—14]. Each
outage was triggered by the loss of a transmission line during a period of high grid load. Subsequently, the power
flows were rerouted, causing secondary overloads and eventually a cascade of failures. In these three examples,
the cascades propagated mostly locally—overloads took place in the proximity of previous failures. However,
this is not necessarily the case during power outages (see, e.g. [15]), raising the question of how networks flows
are rerouted after failures [16-23].

In biological distribution networks, robustness against link failure is a critical prerequisite that guards
against potentially life-threatening events such as stroke [24] or embolism [25, 26], but also to function
efficiently in the presence of fluctuations [3, 27, 28]. Thus, biological networks are often (but not in all cases, such
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asin the penetrating arterioles of the cortical vasculature [29]) endowed with highly resilient, redundant
topologies that optimize rerouting of flow in case of link failure to the network [28] and are generated through
adaptive developmental mechanisms [30]. For the understanding of such life-threatening conditions it is
therefore crucial to investigate the behavior of the vascular network in the case of failure.

To understand the vulnerability of networks, we here provide a detailed analysis of the impact of link failures
in linear flow networks. We focus on how the network topology determines the overall network response as well
as the spatial flow rerouting. We consider linear supply network models, where the flow between two adjacent
nodes is proportional to the difference of the nodal potential, pressure or voltage phase angle. Linear models are
applied to hydraulic networks [31], vascular networks of plants and animals [28, 32—35], economic input—
output networks [36] as well as electric power grids [37—42]. The linearity allows to obtain several rigorous
bounds for flow rerouting in general network topologies and to solve special cases fully analytically.

The paper is structured as follows; first, we formally introduce linear flow networks in section 2 and present a
framework for studying line outages in such networks in section 3. Afterwards, we establish a mathematical
analogy of flow rerouting after line outages and electric dipole fields on square grids in the continuum limit in
section 4. We then derive rigorous bounds on the strength of this effective dipole to describe how the flow is
rerouted on arbitrary network topologies in section 5. Finally, we establish a new distance measure on networks,
the rerouting distance, which is able to predict the flow redistribution much better than the ordinary geodesic
distance in section 6. Furthermore, we study the effect of network sparsity on the dipole pattern of flow
redistribution and quantify this scaling with distance from the failing link in the same section.

2. Linear flow networks

Consider a network consisting of N nodes (vertices) that are connected to each other via lines (edges) denoted by
(m, n) for aline going from node m to node n. We assume the network to be globally connected, otherwise
consider each connected component of the network separately. Assign a potential or phase angle 6,, € R to each
node m in the network. Then we assume the flow E,,_,,, between nodes m and # connected via line (1, n) to be
linear in the potential drop along the line

Fm—>n = bmn(em - on) (1)

Here, by, = b, is the transmission capacity assigned to the line (m, 1) that describes its ability to carry flow.
This equation may for example be used to describe hydraulic networks [31, 43] or vascular networks of plants
[28], where the 6, denotes the pressure at some node n and the capacity b,,,, scales with the diameter of a pipe or
vein. Our main focus will be its application to electric power engineering, where this linear approximation of the
power flow equations is referred to as the DC approximation [38—40]. In this case, F,,_,,, refers to the flow of real
power along a transmission line (m, n), 6, is the voltage phase angle at node n and b,,,,, is proportional to the
line’s susceptance. For the sake of consistency, we refer to the 6, as ‘potentials’ throughout this paper. Since only
phase differences are involved in the flow calculation, these potentials are only defined up to a constant phase
shift. Typically, an arbitray node is selected where the potential is set to zero, 8, = 0.

In addition to that, we assume that Kirchhoff’s current law holds at the nodes of the network which states
that the inflows and outflows at any node m balance

Z E, .. =P, (2)

where the right-hand side denotes the inflow (B,, > 0) or outflow (B,, < 0) at node 71, commonly called the
‘power injection’ in power engineering. Equations (1) and (2) describe the state and the flow of the network up to
a constant phase shift as described above once the line parameters b,,,,, and the injections P,, are given.

These equations may be conveniently written using a vectorial notation. Define the vector 8 = (0),..., Oy) € RN
of the nodal potentials or voltage phase angles and the vector P = (P,..., Py)" € RY ofnodal injections. Here and in
the following sections, the superscript “ T~ denotes the transpose of a vector or matrix. We further label all lines in the
gridby # = 1,..., L and summarize all line flows in avector F = (F,..., F;)' € R!. Equation (1) may then be
rewritten as

F = B,K'0, (3

where B; € RE*E s a diagonal matrix containing the capacities b, of all edges. Furthermore, we defined the
node-edge incidence matrix K € RN*L. To define this matrix in an undirected graph, one typically fixes an
arbitrary orientation of the graph’s edges such that its components read
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1 ifline # starts at node n,
K., = 3—1 ifline Z ends at node n, 4)
0 otherwise.

The node-edge incidence matrix also relates the injections to the flows incident at a node. More specifically,
Kirchhoff’s current law (2) may be rewritten as follows

P = KF = KB,K'60 = B6. (5)

Here, we defined the matrix B = KB;K' € RN*N commonly referred to as the nodal susceptance matrix in
power engineering. Mathematically, B is a weighted Laplacian matrix [44, 45] with components

—by if m is connected to n by 7.

Here, A,, is the set of lines which are incident to m.

3. Algebraic description and analysis of line outages

An important question in network security analysis is how the flows in the network change if a line fails.
Denoting by F, the initial flow of the failingline £ = (r, s), the flow change AF, at a transmission line
e = (m, n)iswritten as

AF, = LODE,/ E. (6)

Adopting the language of power system security analysis [37, 38], we call the factor of proportionality the line
outage distribution factor (LODEF). In the following, we present two alternative derivations as well as a physical
interpretation of the linear flow rerouting problem.

3.1. Self-consistent derivation of LODFs

To derive an explicit expression for the LODFs one generally starts with a related problem. Consider an increase
of the real power injection at node rand a corresponding decrease at node s by the amount AP. The new vector
of real power injections is then given by

P=P+ AP, (7)

where the components of 1, € RN are +1 at position r, — 1 at position s and zero otherwise. Here and in the
following, we use a hat to indicate the state of the network after aline outage or a similar change of the topology.
The change of the real power injections causes the following change in the real power flow

AE,, = bmnVIﬂB*u,SAP. (8)

=:PTDF( . r,s

Here, B denotes the Moore—Penrose pseudo-inverse of the Laplacian matrix B and the factor of proportionality
is referred to as the power transfer distribution factor (PTDF).

The LODFs can be expressed by PTDFs in the following way [38]. To consistently model the outage of line
(r, s), one assumes that the line is disconnected from the grid by circuit breakers and that some fictitious real
power AP isinjected at node s and taken out at node . The entire flow over the line (7, s) after the opening thus
equals the fictitious injections F; = AP. Using PTDFs, we also know that

A

Es=E+ PTDF(r,s),r,s AP.

Substituting £, = AP, solving for AP and inserting equation (8) yields
PTDFq,n),r,s

FOPFom o) = T prpp,
- (1,5),1,s

)

For consistency, one usually defines the LODF for the failing line as follows: LODF) () = — 1. In addition to
that, we exclude cases where the failing line is a bridge, i.e. a line whose removal disconnects the graph, from our
analysis in the following sections.

3.2. Algebraic derivation of LODFs
The LODFs can also be obtained in a purely algebraic way without any self-consistency argument [46]. As the
line £ = (r, s) fails, the nodal susceptance matrix of the network changes as

B — B = B 4+ AB, where AB = B, (10)
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which causes a change of the nodal potentials or voltage phase angles respectively,

0—06=0-+1p. (11)
Equation (5) for the perturbed grid now reads
(B + AB)(@ + 1) = P. (12)
Subtracting equation (5) for the unperturbed grid, we see that the change of the voltage angles is given by
W = —(B + ABY'AB 0 = (B + AB) v,E.. (13)

The change of flows after the outage ofline (r, s) and thus the LODFs are calculated from the change of the
voltage angles which yields

AFn = by W — ) = byun Uy
= bmnVrTm(B + ABYVrsEs- (14)

In principle, we could now use these equations to calculate the flow changes and the LODFs. However, this
would require to invert the matrix B = B + AB separately for every possible line (r, s) in the grid, which is
impractical. Nevertheless, we can simplify the expression using the Woodbury matrix identity,

(B + Brvsyy)' = B' — By (B + v v) Y B

rs

Thus we obtain
(B + B v = (1 + By, B'y) ! By, (15)
such that the flow change (14) reads
byt B

AE,, =
"1 = by Biy,

X Es, (16)
which is identical to equation (9) obtained using the standard approach.

3.3. Electrostatic interpretation
A deeper physical insight into the network flow rerouting problem is obtained by the analogy to discrete
electrostatics. Equation (13) can be rearranged into a linear set of equations for the change of the nodal potentials

E"/J = Esv. 17)

Here, B is the Laplacian of the grid after the failure, i.e. the grid whereline (r, s) has been removed. Alternatively,
we can formulate the equation in terms of the original network topology, substituting equation (15) into
equation (13). This yields the linear set of equations

By =q (18)
with the dipole source
q= (1 - bTSV;EBTVTS)_lE‘SIJST' (19)

Asnoted before, B and B are Laplacian matrices and the right-hand side of both equations (18) and (17) are
non-zero only at positions r and s with opposite sign. Hence, these equations are discrete Poisson equations with a
dipole source and 1 is a dipole potential, see [47, ch 15] for a detailed analysis of this equation. The main
complexity of the line outage problem thus arises from the network topology encoded in the Laplacian B, which
can be highlyirregular.

The two equations (18) and (17) yield the same potential 1), but are formulated on different topologies—
either on the original network topology or the topology after the outage. To compare the impact of different
failures it is beneficial to use the original topology, such that only the dipole inhomogeneity differs—not the
electrostatic problem itself. Then, the strength of the dipole depends on the network topology via the
prefactor (1 — b1, By~

Using the analogy to electrostatics we can solve the flow rerouting problem for regular network topologies
(section 4) and provide some general rigorous results (section 6.1). To understand flow rerouting in networks
with complex topologies, we thus have to account for the spatial spreading pattern described by B (see
section 6.3) as well as the dipole strength, which quantifies the gross response of the grid (see section 5).

4. Failures in regular networks and the continuum limit

To obtain a first insight into the spatial aspects of flow rerouting, we consider an elementary example admitting a
solution in the continuum limit. Consider a regular square lattice embedded in a plane as depicted in figure 1
and studied in a slightly different form in [48]. All nodes are labeled by their positions r = (x, y)' in this

4
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Figure 1. Impact of alink failure in a homogeneous square lattice. (a) Normalized change of the nodal potentials 1/,,, which are the
nodal phase angles when referring to power grids, for a network with uniform edge weights for a single failing link located in the center
of the network. The size of the nodes as well as the colorcode represent the strength of the change in potential. The change is strongest
close to the failing link and decays with distance. (b) Normalized change of the link flows AF,,,, for the same topology. Arrows and
color represent direction and strength of flow changes, respectively. The pattern corresponds to the one produced by an electrostatic
dipole in two dimensions.

two-dimensional embedding and the lattice spacing is denoted as h. We introduce continuous functions ¢y and b
such that ¢ (x, y) is the potential of the node at (x, y) and b(x + h/2, y)is the weight of the link connecting the
two nodes at (x, y) and (x + h, y). The left-hand side of the Poisson equation (18) evaluated at position (x, y)
reads

BY)(x, y) = b(x + h/2, NP (e, y) — (x + by )] + bx — h/2, [ (x, y) — P(x — h, p)]
Tby + h/ DWW y) — Yy + W]+ b0,y = h/2[Y0x y) — iy — b
=—h’V - (b(x, y)) V) + OH). (20)
Here, we made use of the fact that the components of the gradient Vi) = (0t), 9,1))' may be expressed as
W y) _ o $E Y — Yo y)
Ox h—0 h

but did not take the limit yet. The derivative with respect to y may be calculated analogously.
Before we proceed to the right-hand side, we remark that the flow changes AF according to equation (14)
are given by

AE,, = hAE(x + h/2, }’) =b(x+ h/2> )’)(Wx + h, }’) — P(x, )’)),
hAE,(x, y + h/2) = b(x, y + h/2)(p(x, y + h) — ¢(x, y)),

where (m, n) denotes the link where the flow changes are monitored which is either oriented parallel to the
x-axis, thus considering AF, or the y-axis, thus considering AFE,. If we divide by /1 and take the continuum limit
h — 0 the overall continuous flow changes read thus

AF(x, y) = b(x, p) VY (x, y). 1)
Note that the expression AF refers to the change in flow due to the link failure here and should not be confused
with the continuous Laplace operator.

The right-hand side of the discrete Poisson equation (18) may be calculated similarly noting that only two
nodes contribute with opposite signs. Let us assume that the failing link is parallel to the x-axis connecting nodes r
andslocatedat r, = (x,, ) and r; = (x,, 3)' = (x, + h, ). The discrete version of the right-hand side reads

Es
=V,
1 1 — by Biy,
We will now derive the continuum version of this equation. First, the flow on the failing link before the outage F,,
may be calculated as

Ec=b(x, + h/2, y)(O(x, + h, ) — 0(xr, 3))
= hb(x,, yr)% + O(h?)
0x
= hE.(x,, ) + O(h?),

where F(x, y) = b(x, y) VO(x, y)isthe continuum flow before the outage. Second, the vector v, can be
formally interpreted in terms of the two-dimensional delta function ¢ (x, y) and reads for the given link failure

5
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U =0(x —x, +hy —y) — 6(x — X,y — 3)
_ 06— Xy —y)
N Ox

Finally, let us assume that a continuum version of the Green’s function B exists. Then the denominator may be
calculated as

+ O(h?).

bysv B, = h2b(x, + h/2, ¥) (f yb(x — xp, y — YU (%, ) 0x0(x — X, y — y)dx dy)
%' (x;, ;)
O0x0y

where b’ (x, y)is the aforementioned continuum version.
Thus, in total we obtain after expanding the entire right-hand side to lowest order in the continuum limit

q(x, y) = h?F(x,, ) Vé(x — x,, y — 3) + O(). (22)

= W%b(x,, ) + o),

Here, F(x,, y,) isassumed to be parallel to the dipole axis, i.e. the direction of the link failure, which is either the
x- or the y-direction for the given setting.

We can now formally divide left-hand side (20) and right-hand side (22) by h* and take the limit & — 0 to
obtain the final continuum limit of the Poisson equation,

v : (b(x) )’)Vi/)) - _qTV(S(x — X Y — }’,)) (23)

where the source term is g (x,, y,) = F(x,, y,), the unperturbed current field. We note that we obtain the same
continuum limit regardless of whether we use equation (17) or (18) to do the expansions. Thus, the non-locality
thatis encoded in equation (18) is lost in the continuum formulation.
If the link weights are homogeneous, b(x, y) = b, and the failing link is assumed to be located at the origin
(xr» ) = (0, 0) the solution is given by the well-known two-dimensional dipole field
v =12 (24)

IrlP>”

s [l

AF(r)=b - (L . & r]. (25)

We thus obtain a fully analytic solution in the continuum limit. This solution reveals that the impact of link
failures decays algebraically in homogeneous lattices. We consider this decay along two different axes. Assume
the dipole to be located at the origin in x-direction, such that g = (&, 0)” where ¢ < 1is some small real
number. First, consider the decay in x-direction where r = (x, 0) . In this case, we obtain for the decay of the
potential and the flow changes

Bl 0)) = =X,
X X
T T
AF((x, 0))) = b(% - ng—i,O) - —b(%,o) .
X X X

This decay in the flow changes may also be observed in the discrete version of equation (22) and is shown in
figure 2(a), for aline failure in a discrete square grid. Along the same lines, we may quantify the decay in
y-direction where r = (g, y)' for the same dipole orientation. In this case, we obtain

2
by == x =
y Y
:
AF (e, ) )zb(%, —25—23] .
y 171

Here, we assumed the position vector to be dominated by its y-component, ¢ < y such that||r]| ~ |y|. In total,
we observe a y~3-scaling in the flow changes in y-direction perpendicular to the dipole source and a y~2-scaling
in y-direction parallel to the dipole source, see figures 2(a)—(c).

5. Rigorous bounds on the dipole strength

We now turn to realistic networks with irregular topologies. The change in the nodal potentials or voltage phase
angles v, and flows AF,,_,,, is determined by the discrete Poisson equation (18). We first consider the right-hand
side of this equation, the dipole strength, which describes the gross response of the network flows to the outage.
This response is proportional to the initial flow of the failing edge F, and the factor

6
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Figure 2. Scaling of LODFs versus geodesic distance to failing edge for different unweighted topologies and different levels of sparsity.
(a)-(c) LODFs are evaluated in different directions from the link failure and averaged over 100 realizations of square lattices from
which a fraction of s = 0 (black circles), s = 0.05 (red crosses) and s = 0.1 (blue plusses) links was removed randomly. The failing
edge is assumed to be located in x-direction at the center of a square grid of size 201 x 202, see figure 1. LODFs are calculated for (a)
links along the x-direction (between (x, 0) and (x + 1, 0)), (b) links along the y-direction parallel to failing link (between (0, y) and
(1, y))and (c) links along the y-direction perpendicular to the failing link (between (0, y) and (0, y + 1)). The dist™2 (a), (b) and
dist™ (c) scaling agrees with the dipole scaling predicted using equation (25) as indicated by black lines. The levels of sparsity
considered here do not show any effect on the scaling when considering directions parallel to the dipole axis (a), (b), but the scaling
becomes more long-ranged with increasing sparsity in direction perpendicular to this axis (c). (d) The dist? scaling is not unique to
square grids (purple squares, size 1000 x 1000) but may also be observed for the two other regular tilings, namely the hexagonal grid
(orange hexagons, 150 x 150 hexagons) and the triangular grid (green triangles, size 1001 x 500). LODFs were again computed
along the shortest path in x-direction for links oriented parallel to the dipole. The branching for the hexagonal grid is due to the fact
that the path in x-direction is non-unique and non-straight here, such that one of the shortest paths was chosen arbitrarily. Deviations
from the scaling occur for large distances due to finite-size effects.

(1 — by By ' = (1 — n(r, s))". (26)

The factor 1 — 7(r, s) describes the non-locality of the network response to a local perturbation at link
(r, 5). To see this, consider a grid where the real power AP is injected and withdrawn at the terminal nodes of the
link (r, s). The direct flow over the link is given by

E_.; = b BTy, AP = n(r, s) AP, (27)

whereas the total flow is just given by AP. The factor n(r, s) thus measures the fraction of the flow which is
transmitted directlyand 1 — 7(r, s) is the fraction transmitted non-locally via other pathways. Hence,
1 — n(r, s) canalso be seen as a measure of redundancy. A high non-local flow indicates that there are strong
alternative routes from r to s in addition to the direct link (7, s). If no alternative path exists, the flow must be
routed completely via the directlink such that1 — 7(r, s) = 0.

We conclude that the properties of alternative and direct paths are decisive for the understanding of flow
rerouting. Before we proceed, we thus review the formal definition of a path in graph theory.

Definition 1. A path from vertex r to vertex s is defined as an ordered set of vertices
(Vo =7, V1, VseesVk = 5)s (28)

where two subsequent vertices must be connected by an edge and no vertex is visited twice. Two paths are called
independent if they share no common edge. The unweighted length of such a path is defined as the number of
steps k, while the weighted path length is given by the sum of the edge weights along the path, Z';zl Wy, - Inthis
work, the edge weights are given by the inverse susceptances w;; = 1/b;;. The (weighted or unweighted) geodesic
or shortest path distance of two vertices rand s is defined as the (weighted or unweighted) length of the shortest
pathfromrtos.

The interpretation as a redundancy measure directly relates the factor 1 — 7(r, s) to the topology of the
network. A first rough estimate can be obtained from the topological connectivity Ay (r, s), which is defined as

7
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Figure 3. The locality factor 7(r, s) generally decreases with the topological connectivity Ay (r, s). Values of 7(r, s) for alllinks (r, s)
with given value of Ay (r, s) are shown in a box-whisker-plot: the cross gives the mean, the read line the median, the box the 25%,/75%
quantiles and the and the grey horizontal line the 9%/91% quantiles. Results are shown for three standard test grids: (a) ‘case118’, (b)
‘casel354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient p and Kendall’s rank correlation coefficient 7
are given for each test grid.

the number of independent paths from node r to node s. A comparison for several test grids in figure 3 shows
that n(r, s) decreases with Ar(r, s) on average as expected, but that there is a large heterogeneity between the
links.

To obtain a better topological estimate for the locality factor we need to take into account the heterogeneity
of the link weights. The topological connectivity Ar(r, s) counts the minimum number of edges which have to
be removed to disconnect the nodes rand s. We can define a weighted analog Ar (7, s) as the minimum capacity
which has to be removed to disconnect the nodes rand s. This is a classical problem in graph theory, where it is
referred to as the minimum cut [50]. We will now elaborate this quantity in a definition. An (r, s)-cut can be
defined as follows. Let r € S C V and s € V'\ S be two vertices taken from the two disjoint sets. The (r, s)-cutis
defined as the set of edges 6(S) = {(u, v) € E |u € S, v € V\Sorv € S, u € V\S} connecting the two
disjoint vertex-sets. The set of edges 6 7(S) = {(u, v) € E | u € S, v € V\ S} isreferred to as the forward edges
of the cut. The capacity C of a cut § (S) and the corresponding minimum capacity Az (r, s) between rand sare
then given by

CeEN= > by

(i) EFH(S)

Ap(r, 5) = min C(6(9)).
{SCV | reS,seV\S}

By virtue of the max-flow-min-cut theorem [51], Az (r, s) is equivalent to the maximum flow which can be
transmitted from r to s respecting link capacity limits:

N
Ae(r, s) = max »  E_,,
F

n=1

such that |E,,| < by, V edges (m, n)

N
and Y E,=0Vm=r,s. (29)

n=1

Numerous efficient algorithms exist to calculate this maximum flow without performing the optimization
explicitly [51]. The ratio b,s / Ap (1, s) then gives the ratio of direct flow to total flow from r to s and thus provides
an adequate topology-based estimate for the locality factor 7 (r, s). Indeed, we can prove that it provides a
rigorous lower bound.
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Figure 4. The locality factor 7)(r, s) is estimated by the topology based measure b, / Ap(r, s) with high quality. Results are shown for
three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient p and
Kendall’s rank correlation coefficient 7 are given for each test grid. The black line is the lower bound given by proposition 1.

Proposition 1. The algebraic locality factor 1 (r, s) is bounded by

brs
Ap(r, s)
A proofis given in appendix A. Numerical simulations for several test grids reported in figure 4 reveal that the
topological estimate not only provides a lower bound, but a high-quality estimate for the algebraic locality factor.
The Pearson correlation coefficient p between 7 (r, s) and b,; / Ar(r, s) exceeds 0.92 for the three grids under
consideration.

<@, s) < L (30)

We arrive at the conclusion that the dipole strength given by E,(1 — n(r, 5))~! generally decreases with the
redundancy measures A7 (r, s)and Ag(7, $).

An upper limit for the locality factor 7 (r, s) can be obtained from an elementary topological distance
measure. We consider the weighted geodesic distance of the two nodes r and s after the failure of the direct link
(r, 5), which we denote by dist}'(7, s). The superscript w stands for weighted distance, the subscript 1 for the
distance measured in the graph after removal of the link (r, 5). We then have the following upper bound.

Proposition 2. The algebraic locality factor 1 (r, s) is bounded from above by

-1

1
, )< |14+ —| . 31
n(w ) [ bys x dist)"(r, s)] 1)

A proofis given in appendix B. Numerical simulations for several test grids reported in figure 5 reveal that the
estimate in terms of the shortest path length not only provides an upper bound, but a high quality estimate for
the algebraic locality factor. The Pearson correlation coefficient p exceeds 0.94 for the three grids under
consideration.

We further note that the factor v, ! Bfu,, can also be interpreted as a distance measure—the resistance
distance [52, 53]. We come back to the quantification of distances in flow networks later in section 6.3.

6. Spatial distribution of flow rerouting

We now turn to the spatial aspects of flow rerouting in general network topologies. We first discuss some
rigorous results, showing how the network topology determines the rerouting flows. Then, we return to the
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Figure 5. An upper bound for the locality factor 7)(r, s) is found in terms of the length of the shortest alternative path from rto s,
assigning to each link (m, 1) aweight b,,!. The black line is the lower bound given by proposition 2 and the blue dots give results for all
links in three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. High values of Pearson’s correlation
coefficient p and Kendall’s rank correlation coefficient 7 show that the expression in proposition 2 provides a good estimate for the
locality factor 7(r, s), not only alower bound.

regular tilings and study the effect of increasing sparsity in these topologies on the dipole scaling. Finally, we
suggest a new measure of distance for flow rerouting and examine its performance on realistic network
topologies taken from power grids.

6.1. Rigorous results
To start off, we first present a lemma due to Shapiro [54], relating the flow changes after alink failure in an
unweighted graph solely to the topology of the underlying network.

Lemma 1. Consider an unweighted network with a unit dipole source along the edge (r, s), i.e. a unitinflow at noder
and unit outflow at nodes. Then the flow along any other edge (m, n) is given by
Nr,m — n,s) — N, n — m, s)
Ein= N >

where N(r, m — n, s) is the number of spanning trees that contain a path fromr to s of the formr,..., m, n,..., s
and N is the total number of spanning trees of the graph.

This lemma exactly gives the LODFs in terms of purely topological properties—the number of spanning
trees containing certain paths. A generalization of this theorem to weighted graphs was recently presented
in [55].

However, counting spanning trees is typically a difficult task such that these results are of limited use for
practical applications. Nevertheless, they reveal the importance of certain paths through networks which we will
analyze numerically in more detail below. Before we turn to this issue, we derive some weaker, but more easily
applicable rigorous results.

We expect that the flow changes AF,,, decay with distance as for the case of the square lattice analyzed in
section 4. Can we establish some rigorous results on the decay with distance for arbitrary networks? Consider the
outage of a single edge and assume that the network remains connected afterwards. We label the failing link as
(r, s)such that F_,; > 0 w.l.o.g. We first consider the change of the nodal potential or voltage phase angle ),
and its decay with distance to the failing link (r, s). More specifically, we define the maximum and minimum
values of v, attained at a given distance:

10
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Ug= max P,
n,disty(n,r)=d

3= min Y,
n,disty(n,s)=d
Here, disty(n, r) denotes the geodesic distance between two nodes n and rin the initial unweighted
graph (indicated by the superscript u for unweighted and subscript 0 for the initial pre-contingency network).
We then find the following result.

Proposition 3. Consider the failure of a single link (r, s) with F._,; > 0 in a flow network. Then the maximum
(minimum) value of the potential change 1, decreases (increases) monotonically with the distance to nodesr and's,
respectively:

Ug < Ug—1, 1< d < dmax~
fd = fd—l: 1< d < dmax-

A proofis given in appendix C. We thus find that potential changes generally decrease with the distance in
magnitude and so do the flow changes.Furthermore, we can exploit the analogy to electrostatics to gain an
insight into the scaling of flow changes with distance. As the flows are determined by a discrete Poisson equation,
adiscrete version of Gauss’ theorem follows immediately. We note that we formulate this result in terms of the
original network topology, see equation (18).

Lemma 2. Consider the failure of a single link (r, s) in a flow network and denote by V the set of vertices in the
network. For every decomposition of the network V.= Vi + V, withr € Viand s € V,wehave
Z AE, .,=E, (1 - n(r, 5))_1 . (32)

meWV,neV,

That is, for each decomposition the total flow between the two parts V; and V , equals the dipole strength.

This lemma supports the intuitive expectation that on average flow changes decay with distance in meshed
networks: choose V; to include all nodes which are closer to r than to s and have a distance to r smaller than a
given value

W = {n € V|disty(r, n) < d; disty(r, n) < distg(s, n)}.

With increasing value of d the number of nodes in V; increases and typically the number of edges between V;
and V, increases, too. The total flow over these links remains constant according to lemma 2, such that the
average flow will generally decrease. The exact scaling of the number of edges between V; and V, of course
depends on the topology of the network.

One can furthermore show that a sufficient connectivity is needed for perturbations to spread. Generally,
flow can be rerouted via an edge (1, n) onlyif it can enter and leave the link via two independent paths. One can
thus prove the following statement [55, 56].

Proposition 4. The line outage distribution factor LODE, , between two edges e = (m, n)and £ = (r, s) vanishes
ifthere are less than two independent paths between the vertex sets {r, s} and {m, n}.

6.2. Impact of network topology
Now that we derived rigorous results on the scaling of LODFs, we want to study the influence of network
connectivity on the scaling in more detail.

To do so, we first compare the scaling obtained for the square grid to the one in the other two regular tilings
of two-dimensional space, namely the hexagonal grid and the triangular grid. In perfect realizations of these
grids, each node has a degree of deg, . = 3 and deg, ; = 6, respectively, whereas the degree for the square grid
reads deg, = 4.In figure 2(d), the LODFs are evaluated for these three topologies with increasing geodesic
distance from the failing edge located again in the center of the networks between the nodes at (x,, y,) = (0, 0)
and (x, ) = (1, 0). The quadratic scaling with the geodesic distance in x-direction ||x||~* (black, dotted line) is
preserved for all three topologies, i.e. the triangular grid (green triangles, bottom), the square grid (red squares,
center) and the hexagonal grid (blue hexagons, top). The grids used here were of size 1000 x 1000 and
1001 x 500 nodes for the square grid and the triangular grid, respectively, and 150 x 150 hexagons for the
hexagonal grid.

Thus, the quadratic scaling is robust throughout different regular networks. However, real networks are in
general not regular. For this reason, we proceed by studying the effect of increasing sparsity in these regular
tilings. Define the sparsity £ € [0, 1] C R as the fraction of edges removed from the original graph. We make use
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Figure 6. Increasing sparsity leads to more long-ranged effects of link failures in regular grids. (a) Exemplary scaling of LODFs ina
square grid of size 500 x 500 with increasing sparsity (colors from dark to light purple), now achieved through the removal of edges
not contained in an arbitrary spanning tree. (b) Whereas the effective exponent shows no change and thus still obeys approximately
the inverse-square law for all topologies, (c) the logarithmic ratio between LODFs with and without sparsity at a certain distance
increases on average with increasing sparsitiy. Boxplots are shown for 100 realizations of the hexagonal grid (left, orange), square grid
(purple, center) and triangular grid (green, left) choosing a random spanning tree as the basis for edge removal for each realization and
value of sparsity.

of two different methods to achieve increasing sparsity. Our first method is a completely random removal of
edges in the graph followed by measuring the LODFs along a specified path. If an edge along the path does no
longer exist, we simply skip the edge. The results obtained from this method are shown in figures 2(a)—(c). There
is no change visible in the scaling of LODFs, except for the direction perpendicular to the dipole in panel (¢). In
particular, only small values of sparsity £ can be studied using this method, since a random removal of edges may
easily result in disconnected graphs. For this reason, we make use of another method.

For the second method, we first construct an arbitrary spanning tree of the network after removal of the
failing edge. Then, we subsequently remove random edges from the graph that are not part of the tree until a
fraction & of its original edges is removed from the graph. This way, we make sure that the whole graph stays
connected at all times. We continue by constructing the shortest path from the failing edge ((0, 0), (1, 0)) to the
node located at (x .y, 0) and quantify the LODFs along this path. Note that using this method to make a
graph sparser, we need to take into account the graph-specific maximal sparsity &, .. ¢, i.e. the fraction of edges
whose removal would disconnect the graph. Assuming the initial tree to be minimal, this fraction may be
calculated as & hex = 1/3> Enaxsg = 1/2a0d & i = 2/3 for the hexagonal grid, square grid and triangular
grid, respectively.

Using this procedure, we can quantify the scaling of LODFs in grids with increasing sparsity. The direct
assessment of a scaling exponent is difficult for sparser graphs due to the large spread in LODF values, see
figure 6(a). This is why we construct a different measure to quantify this scaling. We consider the effective
exponent k(£), where £ is the graph’s sparsity, and assume a scaling of the form

[LODE(r, £)| o r=*©

in some region of the geodesic distance r = ||r|| from the link failure. This effective exponent is calculated as
follows
k() = —log re[5x10'—w,5x10'+w] [LODF(r, &)
B 5 Z
’6[10‘—w,10‘+w]|LODF("’ 3]
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where w € N isa window specifying the range to average over in order to smooth the LODF values considered.
We chose a window size of w = 2 when calculating the effective exponent in practice which we found to resultin
a good compromise between smoothing and completely removing the trend. However, we did not observe a
strong effect of the window size on the results. In addition to that, we chose to compare the LODFs at values
centered aroundr = 10" andr = 5 x 10' when calculating the effective exponent since using this range allows
us to capture only the intermediate range of the curve. For larger distances from the failing link, finite size effects
prevent the assessment of the exponent whereas for smaller distances, the LODF does not yet decay when
considering high values of sparsity due to a lack of alternative paths, as may also be observed in figure 6(a).
For a perfect inverse square law |[LODF| o |||~ and a vanishing window w = 0, this parameter yields
k = —log,(5%) = 2 asrequired. In figure 6(b), it can be observed that this effective exponent stays
approximately constant at k ~ 2 over different values of sparsity and the three different topologies considered,
where results for each value of sparsity were obtained using 100 random realizations of edge removals and with
the same grid sizes as stated previously.

To further quantify the effect of increasing sparsity in regular networks, we make use of another measure
which we refer to as the LODF ratio R,, (). Itis simply calculated as the logarithmic ratio between the LODFs
with and without sparsity, again averaged over a fixed window of distances

Zf€[1017w,101+w]|LODF(7’; |
ILODE(r, £ = 0)| |

Rw(g) = log
" ZrE[lOlfw,IOIer]

Note that we evaluate this parameter at a distance of 10" but we found the parameter to yield similar values for all
distances considered. A parameter of R,,(£) = 1then represents a tenfold increase in the LODFs as compared to
the network without any edges removed. In figure 6(¢), this parameter is shown for the different topologies and
sparsities. Here, a window size of w = 5 was used. An increase with increasing sparsity is clearly visible. In
particular, the LODFs increase on average more than tenfold close to the highest possible values of sparsity.

In total, we observe that the scaling exponent derived from the dipole analogy in section 5 holds for the
regular networks even when removing a large fraction of their edges. On the other hand, the LODF values ata
certain distance from the failing link show an increase with increasing sparsity, such that the actual effect of alink
failure can be up to tenfold stronger than for the corresponding regular grid with no links removed. Thus, the
overall effect of alink failure is more long-ranged in a sparser network, although no change in the effective
exponent can be observed.

6.3. Scaling with distance
The impact of alink failure generally decays with distance. While the definition of distance is straightforward in
regular lattices, different measures are meaningful in networks with complex topologies. The geodesic distance
of two links follows from definition 1 for two vertices
C W . W Wrs + Win
edistg[(r, 5), (m, n)] = min disty'(vi, v2) + ——.
v€{r,shva€{m,n} 2
Here, w,; = 1/b,is the edge weight assigned to the edge (r, s). When considering the unweighted analog, the
edge distance is defined analogously setting all edge weights to one. The additional term =" ensures that
neighboring edges have non-zero distance, e.g. unity distance edisty, = 1in the unweighted case. However, this
distance is a bad indicator for flow rerouting in real-world irregular topologies. An example shown in figure 8
demonstrates that this simple distance is only weakly correlated with the magnitude of the LODFs for a real-
world power grid test case.

Instead, we need a distance measure based on flow rerouting. Ifalink (r, s) fails, the flow must be rerouted
through other pathways, as described by the electrical lemma 1. However, it is not feasible to take into account all
spanning trees which govern the flow rerouting. In order to still be able to estimate the impact on another link
(m, n), we will thus consider a path from r to s that crosses this link. The main difference to the ordinary
graph theoretical distance is that we have to take into account a path back and forth. We are thus led to the
following definition.

Definition 2. A rerouting path from vertex r to vertex s via the edge (m, n)is a path

(Vo =1, VheosVi = M, Vig] = 1, Vigo,.. o,V = $) (33)
or

(Vo = 15 Viyew Vi = M, Vi) = M, Vigoseo sV = ), (34)

where no vertex is visited twice. The rerouting distance between two edges (r, s) and (m, n) denoted by
edist™/V[(r, s), (m, n)]is the length of the shortest rerouting path from 7 to s via (m, 1) plus the length of edge
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Figure 7. [llustration of two different distance measures between two links (r, s) and (m, n) (coloured in yellow and dark blue).

(a) The common geodesic or shortest-path distance (indicated by lines coloured in light blue). (b) The rerouting distance is defined as
the length of the shortest path from r to s crossing the link (1, n) and is indicated by thick arrows and lines colored in light blue. The
sample network in this figure is based on the topology of the IEEE 14-bus test grid [57].
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Figure 8. Line outage distribution factors (LODFs) in comparison to the unweighted geodesic and rerouting distances. (a) Magnitude
of the LODFs in the IEEE 30-bus test grid ‘case30’ [57]. The failing link / is marked in red. (b) The geodesic distance to the failing link
edistg. (c) The rerouting distance to the failing link edist,.. (d), (¢) LODFs versus geodesic and rerouting distance (blue dots) including
an exponential (red solid line) and an algebraic (black dashed line) least-squares fit to the data. Due to the low number of data points, a
clear decision whether the correlation is algebraic or exponential is not possible.

(r, s). Equivalently, it is the length of the shortest cycle crossing both edges (r, s) and (m, n). If no such path
exists, the rerouting distance is defined to be co.

The definition of a rerouting path is illustrated in figure 7. Again, we consider a weighted and an unweighted
version of this distance indicated by the superscript w and u, respectively. We note that the length of the edge
(r, s)isincluded in order to make the distance measure symmetric. In appendix D, we show explicitly that this
definition satisfies the axioms of a metric and discuss how to compute the shortest rerouting path.

An example of rerouting distances in comparison to the LODFs is shown in figure 8 for a small test grid. We
observe a much better correlation in comparison to the ordinary geodesic distance defined above. The limitation
of geodesic distances becomes especially clear for situations described by proposition 4. If exactly one
independent path exists between two links, the rerouting distance is 00, while the geodesic distance is finite.
Hence, the latter fails to explain why the LODF between the two links vanishes.

To further investigate the importance of distance, we simulate all possible link failures in four test grids of
different size. For every failing link (r, s) we evaluate the geodesic distance as well the rerouting distance to all
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Figure9. ((a), (b), top) Normalized histograms of the Kendall 7 rank correlation for the magnitude of LODF and unweighted geodesic
distance and ((c), (d), bottom) [LODF| and unweighted rerouting distance between two links in the IEEE test cases 118 (a), (c) and
1354pegase (b), (d). Vertical red lines show the average of the distribution of tau values (see table 1). The stronger correlation of the
rerouting distance with the LODFs as compared to the geodesic distance is clearly visible.

Table 1. Average of the Kendall 7 rank correlation values for magnitude of
LODF versus different distance measures. The four different IEEE test cases
consistently show a higher degree of correlation between rerouting distances
and LODF than between geodesic distances and LODF in both weighted and
unweighted cases, while the unweighted rerouting distance slightly
outperforms the weighted one. For examplary distributions of the 7 values see

figure 9.
Rank correlation 7 for |[LODF| versus distance
testgrid
Geodesic distance Rerouting distance

unw. weighted unw. weighted
case30 —0.4027 —0.4015 —0.8528 —0.8440
casell8 —0.6069 —0.5233 —0.8211 —0.7920
casel354pegase —0.2269 —0.1341 —0.8664 —0.8438
case2383wp —0.3604 —0.2318 —0.7213 —0.6066

other links in the grid. To quantify to which extend the distance predicts the magnitude of the LODFs, we then
calculate the Kendall rank correlation coefficient 7 [58]. This coefficient is used on ordinal data and assumes
values in the interval [—1, 1]. A value of (minus) one indicates perfect (anti)correlation, whereas a zero value
implies no correlation between the data. Table 1 shows the results, averaging over all trigger links (7, s) in the
respective grid discarding bridges. The rank correlation is negative as LODFs generally decay with distance. The
magnitude of the rank correlation is significantly higher for the rerouting distance. In particular for the test grid
‘casel354pegase’ we see that the ordinary geodesic distance has a very limited predictive power for the LODFs
(7] < 0.25), while the rerouting distance is strongly correlated to the magnitude of the LODFs (|7| > 0.83).
Figure 9 illustrates this discrepancy in the distribution of 7 values for the different distance measures for the test
grids ‘case118’ and ‘case1354pegase’. We are thus led to the conclusion that geodesic distances are of limited
interest when considering the impact of link failures and should be replaced by other measures such as rerouting
distances. Notably, we observe no major difference when comparing weighted and unweighted distances.

7. Conclusion

Link failures represent major threats to the operation of complex supply networks across disciplines. In this
article, we examined the impact of such failures in terms of the induced flow changes, which are commonly
described by LODFs. We provide mathematically rigorous results and extensive numerical simulations with a
focus on the gross network response (i.e. the dipole strength), the scaling of flow changes with distance and the
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role of network topology. These quantities are crucial to understand the global robustness of supply networks as
each failure can trigger a cascade of secondary failures with potentially catastrophic consequences.

First, we demonstrated rigorously that the flow changes created by a single failure in a square lattice
correspond to the field of an electromagnetic dipole. Hence the effects of a failure decay with the distance
following an inverse-square law. The dipole analogy developed here allows for an analytical expression
describing the spreading of link failures. Although this treatment is rigorously valid only in the continuum limit,
we showed that the observed scaling extends to the other regular tilings of two-dimensional space even after
removing a fraction of links. Thus, we conclude that the scaling may be expected to hold also for realistic
topologies.

Increasing the sparsity of a network promotes more long-ranged effects up to the point where two links are
only related by one independent pathway. Then, a rerouting between the two links becomes impossible and a
failure of one link does not affect the other. However, this also implies a lack of redundancy such that a link
failure can have catastrophic consequences locally. Our results thus suggest that sparsity promotes non-local
responses to line failures. This is of potential relevance to the understanding of cascading failures, where
previous outages increase sparsity, and deserves further study.

In real-world irregular networks, the gross response of a failure depends on the loading of the link as well as
the local network structure. Rigorous upper and lower bounds were given for the dipole strength relating it to the
redundancy of the failing link. Furthermore, the common notion of a geodesic graph distance is of limited use to
predict flow rerouting. We thus introduced a rerouting distance which we showed to be much more meaningful
to predict the impact of failures.

Whereas the classical analysis of link failures relies heavily on simulation results, our results provide heuristic
methods and rigorous bounds which allow for an analytical insight into the relationship between the structure of
anetwork and its robustness towards link failures. In particular for large networks where simulations are
difficult, our results allow for an a priori analysis of link failures and might also be used to identify critical links,
for instance in terms of the locality factor which quantifies the response of a network to a single failure. This type
of analysis is aided by the general results on decay of maximal flow changes with geodesic and rerouting
distances. We expect that these results fit the better, the more heterogeneous or disordered a network is. Previous
studies [59] have shown that a strong heterogeneity of link parameters leads to a concentration of flows along the
shortest path. In this limit, flow rerouting should be fully dominated by the shortest rerouting path.

We expect our results to be applicable far beyond power grids since the linearized treatment extends to other
phenomena such as hydraulic or biological networks. The rerouting distance along with the bounds on the
locality factor may greatly simplify the study of link failures in all kinds of supply networks and makes them more
accessible. We expect our results on the scaling of LODFs for networks with increasing sparsity along with this
distance measure to help identifying critical parts and paths and improving the overall robustness of supply
networks.
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Appendix A. Proof of proposition 1

Proof. By definition, 7(r, s)is given by the flow E; /AP when the power AP is injected at node r and withdrawn
atnode s, while there is no injection at any other node,

Z E_., = ZnEI—»s:AP’

" (A1)
ZnFmﬁn =0 Vm=rns,
such that
n(r, s) = fios (A.2)
Zn r—n

For the sake of simplicity, we choose AP such that §, — 6, = 1w.lo.g. Then, the inverse of n(r, s) maybe
calculated using the basic relation F,_,; = b,(6, — 6;)as
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b _ S F, (A3)
n(r, s) "
We can now use that the potential drop over all other links in the network is smaller than for the link (r, s)
Igm - gnl < Qr - 05: (A4)
see proposition 3. If 6, — 6, = 1 we thus know that
|an| = |bmn(9m - Hn)l < bun- (A.5)
We thus obtain
bs S F, (A6)
n(r, s) "

such that 6, — 6, = 1,
an = bmn(em - 9;1))
|Bnl < bmn V edges (m, n),

N
> Em=0Ym=r,s. (A.7)
n=1
Comparing to the expression (29) for Ax(r, s) we see that two additional constraints have to be satisfied.
Additional constraints can only decrease the flow-value with respect to the maximum in equation (29) such that
we have

b b
—— < Ap(r, ) = (r, 8) > ———. (A.8)
n(r, s) Ap(r; $)
O
Appendix B. Proof of proposition 2
Proof. Consider first areduced network consisting only of the link (r, s) and the shortest alternative path
between the two nodes, which we denote as (j, = 7, j,, j5»-**, j, = $). Fixing the nodal potentials such that
0, — 6; = lasin A, the direct flow over the link (r, s) is given by
F/r*?S = by, (B.1)
whereas the indirect flow over the shortest alternative path is given by
F/"’jz = F/jz i :F/jn—l “a
~ 07, + bt T
- (B.2)
dist)'(r, s)

Now consider the initial network, to which all edges have been reintroduced, where we keep the same difference
in nodal potentials 6, — 6, = 1which mightrequire a different power injection AP. The direct flow thus
remains the same while the total flow can only increase because new alternative paths may be present such that

1
; Eon>2Frs+ Frj =bs + m (B.3)
Thus we obtain (see equation (A.2))
—1

E—»s 1
r,s) = <1+ — 71 - B.4
0, ) Dy - h [ b, x dist)"(r, s)] (B.4)

n

O

Appendix C. Proof of proposition 3

In this appendix we first give the proof for proposition 3 and then show when the decay becomes strictly
monotonous.

Proof. The proofis carried out by induction starting from d = dax. We only give the proof for the maximum,
the proof for the minimum proceeds in an analogous way. We assume that the network is large enough such that
dmax = 2, otherwise the statement is trivial anyway.
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(1) Base case d = d.x: Consider the node 7 of the network for which dist(n, r) = dp., and 1), assumes its
maximum v, = u,__.Byassumption we have dist(n, r) > 2 such that the node n cannot be adjacent to
the perturbed edge such that g, = 0. The n-th component of equation (18) yields

Bnn'll)n = Z Bnmwm

m=n
= - Z Bnmwm - Z Bnmwm-
m=n,dist(m,r)=d nax m=n,dist(m,r)=dmax— 1
We define the abbreviations
Bd = - z Bum (C.D

m=n,dist(m,r)=d
and use some important properties of the matrix B:

B,, < Oforn=m = By >0,

(C2)
B”n 2 Bdmax + Bdmax—l'
We can furthermore bound the values of 1, in equation (C) by u,,_or u, 1, respectively, such that we
obtain
Bdmaxudmax + Bd —1Ud 1
Udyey = Y < T S Udpy S U1 (C3)

Ba,.. + Ba. 1

max max

(2) Inductive step d — d — 1: We consider the node n of the network with dist(n, r) = d and ¥, = uy.
Starting from equation (18) and using the same estimates as above, we obtain

qn - Z Bnmwm
Uy = ,(/} _ m=n Bdflud—l + Bdl/ld + Bd+1ud+1 (C 4)
! B Bd,1 + Bd + Bd+l

Note that the inhomogeneity g, < 0 for all nodes except for n = r. With the induction hypothesis
ug1 < ug thisyields
< Baoitta— + (Ba + Bar)ua

Ug = Uy < Uj_1, (C.5)
h Bi_1 + Bg + Byt h

which completes the proof.

Appendix D. Rerouting distance

The rerouting distance introduced in definition 2 is a proper distance measure in the sense that it satisfies the
axioms of a metric as shown in the following lemma. It can be calculated by mapping it to the two-edge disjoint
shortest path problem, which can be solved by Suurballe’s algorithm [60]. The mapping is provided by the
lemma 4.

Lemma 3. Consider an undirected graph with non-negative (all-equal) edge weights. Then the rerouting distance
edist¥/V[(r, s), (m, n)] of two edges (r, s) and (m, n) satisfies the following properties.

(i) Positive definiteness:

edist¥/"[(r, s), (m, n)] > 0.

(ii) Symmetry:

edistx/“[(r, s), (m, n)] = edist"/ " [(m, n), (r, 5)].

re
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(11i) Triangular inequality:

edist)¥/"[(a, b), (1, 5)] < edist®y*[(a, b), (m, n)] + edist}/ " [(m, n), (r, 5)],

both in the weighted and unweighted case.

Proof.

(1) Positive definiteness: as long as all edge weights are non-negative, all paths lengths and hence also the
rerouting distances are non-negative.
(2) Symmetry: suppose
(Vo = Ty Viper sV = M, Vi | = Hy... Vg = S) (D.1)
is the shortest rerouting path from r to s via (11, n). Then
(Vit1 = 1, Vigyeo sV = S, Vo = Ty Viyury Vi = ) (D.2)
is also a rerouting path from # to m via (r, s). One can then show that this must be the shortest such
rerouting path via contradiction. So suppose that another path from n to mvia (r, s),
(Ujr1 =1, Ujyo,... g = S, Ug = T, Up,..., Uj = M), (D.3)
is shorter. Then the path
(Vo =17, Voo sVi = M, Vip] = H,...Vp = 5) (D.4)

is arerouting path from r to svia (m, n) and itis shorter than than the one defined in equation (D.1). This
contradicts our initial assumption such that the path defined in equation (D.1) is the shortest rerouting path
from nto mvia (r, s) and we obtain

edist!/ [(r, 5), (m, n)] = edist"/"[(m, n), (r, 5)]. (D.5)

(3) Triangle inequality: let the paths

P =Wo=a, V...V = M, Vg1 = n,...% = b),

Dy = (o = m, Up,..sUj = 7, Ujr1 = S,...Up = 1)
be the shortest rerouting paths from a to b via edge (i, n) and from m to n via (r, s), respectively. Here, we
assume the pathstobe orientedas v; = m, v; = nand u; = r, u; ; | = s, but the proofis the same if
the order of these vertices in the path is reversed. In addition to that, we assume the two distances on the
right-hand side of the inequality to be finite, otherwise the proof is trivial. We can extend the path p, to
become a cycle by adding the edge (1, #1) to the end of the path

0= Wg=My.., U; =1, Ujy1 = S,...Up = N, Upy] = M).

Now we can explicitly construct a rerouting path from a to b via (r, s). Let u; = v, be the first vertex that
appears in both p; and ¢; and let u; = v, the last such vertex. In this case, one of the following pathsis a
rerouting path fromato bvia (r, s)

Py = (Mg = a, Upse.y Uj = Vpy VpgyensVg—1, Uk = Vpp...Up = b)
or p, = (g = a, Uy..., Uj = Vp, Vp_seesVyq 1 Uk = Vpp...Ug = b).
Assume without loss of generality that p; is a rerouting path from a to b via (r, s). In this case, we obtain
edist}/"[(a, b), (1, 5)] < length((a, b)) + length(p,)
< length((a, b)) + length(p,) + length(c)
= length((a, b)) + length(p,) + length((mn, n)) + length(p,)
= edist¥/"[(a, b), (m, n)] + edist’ [(m, n), (1, 5)].

Note that again the length of a path is the sum of the edge weights of all edges in the path when considering a
weighted graph.

19



10P Publishing

NewJ. Phys. 21 (2019) 053009 ] Strake et al

Lemma 4. The shortest rerouting path formr to s via edge (m, n) is given by the union of the edge (m, n) and the two
edge-independent paths r — mandn — sorr — nand m — s which minimize the total path length.

Proof. Assume that we have found a solution to the two-disjoint shortest path problem, i.e. we have found two
edge-independent paths

Vo =1, Vipoos vi = m) and (uop = s, Uy ... Uj = s), (D.6)
which minimize the total path length. By assumption the two paths are edge-independent such that
(Vo =1, VipoosVj = M, Ug = S, Uy ... Uj = S) (D.7)
is a valid rerouting path. Now it remains to show that this path is indeed the shortest possible. So assume the
contrary, i.e. that there exists a path
(Wo =1, W3 W; = M, Wiyp] = N,...Wg = 5) (D.8)

which is shorter than (D.7). But then the two paths

(Wo = 1, Wiyeo sW; = 1) (D.9)
(Wiy1 =1, Wips ... wp =) (D.10)
are edge independent and have a shorter total path length than the two paths D.6. Contradiction. |
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