


New J. Phys. 21 (2019) 053009 https://doi.org/10.1088/1367-2630/ab13ba

PAPER

Non-local impact of link failures in linear flow networks

Julius Strake1,2,4, FranzKaiser1,2,4 , Farnaz Basiri1, Henrik Ronellenfitsch3 andDirkWitthaut1,2,5

1 Forschungszentrum Jülich, Institute for Energy andClimate Research—SystemsAnalysis andTechnology Evaluation (IEK-STE),

D-52428 Jülich, Germany
2 University of Cologne, Institute for Theoretical Physics, D-50937Köln, Germany
3 Department ofMathematics,Massachusetts Institute of Technology, Cambridge,MA02139,United States of America
4 JS and FK contributed equally to this work.
5 Author towhomany correspondence should be addressed.

E-mail: f.kaiser@fz-juelich.de and d.witthaut@fz-juelich.de

Keywords: complex networks, network flows, power grids, link failure

Abstract

The failure of a single link can degrade the operation of a supply network up to the point of complete

collapse. Yet, the interplay between network topology and locality of the response to such damage is

poorly understood.Here, we study how topology affects the redistribution offlow after the failure of a

single link in linearflownetworkswith a special focus on power grids. In particular, we analyze the

decay offlow changes with distance after a link failure andmap it to thefield of an electrical dipole for

lattice-like networks. The corresponding inverse-square law is shown to hold for all regular tilings. For

sparse networks, a long-range response is found instead. In the case ofmore realistic topologies, we

introduce a rerouting distance, which captures the decay offlow changes better than the traditional

geodesic distance. Finally, we are able to derive rigorous bounds on the strength of the decay for

arbitrary topologies that we verify through extensive numerical simulations. Our results show that it is

possible to forecast flow rerouting after link failures to a large extent based on purely topological

measures and that these effects generally decaywith distance from the failing link. Theymight be used

to predict links prone to failure in supply networks such as power grids and thus help to construct

grids providing amore robust and reliable power supply.

1. Introduction

The robust operation of supply networks is essential for the function of complex systems across scales and

disciplines. Almost all of our technical and economical infrastructure depends on the reliable operation of the

electric power grid [1, 2]. Biological organisms distribute water and nutrients via their vascular networks, for

instance in plant leaves [3], the human and animal circulatory system [4], or in protoplasmic veins of certain

slimemolds [5]. Huge amounts ofmoney and assets are exchanged through a complex financial network [6].

Structural damages to such networks can have catastrophic consequences such as a stroke, a power outage or a

major economic crisis.

In power grids, large scale outages are typically triggered by the failure of a single transmission or generation

element [7–11]. The outages in theUnited States in 2003, Italy in 2003 andWestern Europe in 2006 are verywell

documented and provide a detailed insight into the dynamics of a large scale network failure [12–14]. Each

outagewas triggered by the loss of a transmission line during a period of high grid load. Subsequently, the power

flowswere rerouted, causing secondary overloads and eventually a cascade of failures. In these three examples,

the cascades propagatedmostly locally—overloads took place in the proximity of previous failures. However,

this is not necessarily the case during power outages (see, e.g. [15]), raising the question of hownetworks flows

are rerouted after failures [16–23].

In biological distribution networks, robustness against link failure is a critical prerequisite that guards

against potentially life-threatening events such as stroke [24] or embolism [25, 26], but also to function

efficiently in the presence offluctuations [3, 27, 28]. Thus, biological networks are often (but not in all cases, such
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as in the penetrating arterioles of the cortical vasculature [29]) endowedwith highly resilient, redundant

topologies that optimize rerouting offlow in case of link failure to the network [28] and are generated through

adaptive developmentalmechanisms [30]. For the understanding of such life-threatening conditions it is

therefore crucial to investigate the behavior of the vascular network in the case of failure.

To understand the vulnerability of networks, we here provide a detailed analysis of the impact of link failures

in linearflownetworks.We focus on how the network topology determines the overall network response as well

as the spatial flow rerouting.We consider linear supply networkmodels, where theflowbetween two adjacent

nodes is proportional to the difference of the nodal potential, pressure or voltage phase angle. Linearmodels are

applied to hydraulic networks [31], vascular networks of plants and animals [28, 32–35], economic input–

output networks [36] aswell as electric power grids [37–42]. The linearity allows to obtain several rigorous

bounds forflow rerouting in general network topologies and to solve special cases fully analytically.

The paper is structured as follows;first, we formally introduce linear flownetworks in section 2 and present a

framework for studying line outages in such networks in section 3. Afterwards, we establish amathematical

analogy offlow rerouting after line outages and electric dipole fields on square grids in the continuum limit in

section 4.We then derive rigorous bounds on the strength of this effective dipole to describe how theflow is

rerouted on arbitrary network topologies in section 5. Finally, we establish a newdistancemeasure on networks,

the rerouting distance, which is able to predict theflow redistributionmuch better than the ordinary geodesic

distance in section 6. Furthermore, we study the effect of network sparsity on the dipole pattern offlow

redistribution and quantify this scalingwith distance from the failing link in the same section.

2. Linearflownetworks

Consider a network consisting ofNnodes (vertices) that are connected to each other via lines (edges) denoted by

( )m n, for a line going fromnodem to node n.We assume the network to be globally connected, otherwise

consider each connected component of the network separately. Assign a potential or phase angle m to each

nodem in the network. Thenwe assume theflow Fm n between nodesm and n connected via line ( )m n, to be

linear in the potential drop along the line

( ) ( )F b . 1m n mn m n

Here, b bmn nm is the transmission capacity assigned to the line ( )m n, that describes its ability to carryflow.

This equationmay for example be used to describe hydraulic networks [31, 43] or vascular networks of plants

[28], where the n denotes the pressure at some node n and the capacity bmn scales with the diameter of a pipe or

vein. Ourmain focuswill be its application to electric power engineering, where this linear approximation of the

powerflow equations is referred to as theDC approximation [38–40]. In this case, Fm n refers to theflowof real

power along a transmission line ( )m n, , n is the voltage phase angle at node n and bmn is proportional to the

line’s susceptance. For the sake of consistency, we refer to the n as ‘potentials’ throughout this paper. Since only

phase differences are involved in theflow calculation, these potentials are only defined up to a constant phase

shift. Typically, an arbitray node is selectedwhere the potential is set to zero, 0n .

In addition to that, we assume that Kirchhoff’s current law holds at the nodes of the networkwhich states

that the inflows and outflows at any nodem balance

( )F P , 2
n

N

m n m

1

where the right-hand side denotes the inflow (P 0m ) or outflow (P 0m ) at nodem, commonly called the

‘power injection’ in power engineering. Equations (1) and (2) describe the state and theflowof the network up to

a constant phase shift as described above once the line parameters bmn and the injectionsPm are given.

These equationsmaybe convenientlywrittenusinga vectorial notation.Define the vector ( ), , N
N

1

of thenodalpotentials or voltagephase angles and the vector ( )P P P, , N
N

1 ofnodal injections.Here and in

the following sections, the superscript ‘ ’denotes the transposeof a vectorormatrix.We further label all lines in the

gridby ℓ L1, , and summarize all lineflows in avector ( )F F F, , L
L

1 . Equation (1)may thenbe

rewrittenas

( )F B K , 3d

where Bd
L L is a diagonalmatrix containing the capacities ℓb of all edges. Furthermore, we defined the

node-edge incidencematrix K N L. To define thismatrix in an undirected graph, one typicallyfixes an

arbitrary orientation of the graph’s edges such that its components read

2
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⎧

⎨
⎪

⎩⎪

ℓ

ℓ ( )ℓK
n

n

1 if line starts at node ,

1 if line ends at node ,

0 otherwise.

4n,

The node-edge incidencematrix also relates the injections to theflows incident at a node.More specifically,

Kirchhoff’s current law(2)may be rewritten as follows

( )P KF KB K B . 5d

Here, we defined thematrix B KB Kd
N N commonly referred to as the nodal susceptancematrix in

power engineering.Mathematically, B is a weighted Laplacianmatrix [44, 45]with components

⎪

⎪

⎧
⎨
⎩ ℓ

ℓ
ℓ

ℓ

B
b m n

b m n

if ;

if is connected to by .
mn

m

Here, m is the set of lines which are incident tom.

3. Algebraic description and analysis of line outages

An important question in network security analysis is how theflows in the network change if a line fails.

Denoting by Fℓ the initialflowof the failing line ℓ ˆ ( )r s, , theflow change Fe at a transmission line

ˆ ( )e m n, is written as

( )ℓ ℓF FLODF . 6e e,

Adopting the language of power system security analysis [37, 38], we call the factor of proportionality the line

outage distribution factor (LODF). In the following, we present two alternative derivations aswell as a physical

interpretation of the linearflow rerouting problem.

3.1. Self-consistent derivation of LODFs

Toderive an explicit expression for the LODFs one generally starts with a related problem. Consider an increase

of the real power injection at node r and a corresponding decrease at node s by the amount P . The new vector

of real power injections is then given by

ˆ ( )P P P , 7rs

where the components of rs
N are+1 at position r,−1 at position s and zero otherwise. Here and in the

following, we use a hat to indicate the state of the network after a line outage or a similar change of the topology.

The change of the real power injections causes the following change in the real power flow

( )†

( )

BF b P. 8mn mn mn rs

:PTDF m n r s, , ,

Here, †B denotes theMoore–Penrose pseudo-inverse of the Laplacianmatrix B and the factor of proportionality

is referred to as the power transfer distribution factor (PTDF).

The LODFs can be expressed by PTDFs in the followingway [38]. To consistentlymodel the outage of line

( )r s, , one assumes that the line is disconnected from the grid by circuit breakers and that somefictitious real

power P is injected at node s and taken out at node r. The entireflowover the line ( )r s, after the opening thus

equals thefictitious injections F̂ Prs . Using PTDFs, we also know that

ˆ
( )F F PPTDF .rs rs r s r s, , ,

Substituting F̂ Prs , solving for P and inserting equation (8) yields

( )( ) ( )
( )

( )

LODF
PTDF

1 PTDF
. 9mn rs

m n r s

r s r s
,

, , ,

, , ,

For consistency, one usually defines the LODF for the failing line as follows: ( ) ( )LODF 1rs rs, . In addition to

that, we exclude cases where the failing line is a bridge, i.e. a linewhose removal disconnects the graph, fromour

analysis in the following sections.

3.2. Algebraic derivation of LODFs

The LODFs can also be obtained in a purely algebraic waywithout any self-consistency argument [46]. As the

line ^ℓ ( )r s, fails, the nodal susceptancematrix of the network changes as

ˆ ( )B B B B B B, where , 10rs rs rs
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which causes a change of the nodal potentials or voltage phase angles respectively,

ˆ ( ). 11

Equation (5) for the perturbed grid now reads

( )( ) ( )B B P. 12

Subtracting equation (5) for the unperturbed grid, we see that the change of the voltage angles is given by

( ) ( ) ( )† †B B B B B F . 13rs rs

The change of flows after the outage of line ( )r s, and thus the LODFs are calculated from the change of the

voltage angles which yields

( )

( ) ( )†B B

F b b

b F . 14

mn mn m n mn mn

mn mn rs rs

In principle, we could nowuse these equations to calculate theflow changes and the LODFs.However, this
would require to invert thematrix B̂ B B separately for every possible line ( )r s, in the grid, which is

impractical. Nevertheless, we can simplify the expression using theWoodburymatrix identity,

( ) ( )† † † † † †B B B BB B .rs rs rs rs rs rs rs rs

Thuswe obtain

( ) ( ) ( )† † †B B BB B1 , 15rs rs rs rs rs rs rs rs
1

such that theflow change (14) reads

( )
†

†

B

B
F

b

b
F

1
, 16mn

mn mn rs

rs rs rs
rs

which is identical to equation (9) obtained using the standard approach.

3.3. Electrostatic interpretation

Adeeper physical insight into the network flow rerouting problem is obtained by the analogy to discrete

electrostatics. Equation (13) can be rearranged into a linear set of equations for the change of the nodal potentials

^ ( )B F . 17rs rs

Here, B̂ is the Laplacian of the grid after the failure, i.e.the gridwhere line ( )r s, has been removed. Alternatively,

we can formulate the equation in terms of the original network topology, substituting equation (15) into

equation (13). This yields the linear set of equations

( )B q 18

with the dipole source

( ) ( )†q Bb F1 . 19rs rs rs rs sr
1

As noted before, B and B̂ are Laplacianmatrices and the right-hand side of both equations (18) and (17) are

non-zero only at positions r and swith opposite sign.Hence, these equations are discrete Poisson equationswith a

dipole source and is a dipole potential, see [47, ch 15] for a detailed analysis of this equation. Themain

complexity of the line outage problem thus arises from the network topology encoded in the Laplacian B, which

can be highly irregular.

The two equations (18) and (17) yield the same potential , but are formulated on different topologies—

either on the original network topology or the topology after the outage. To compare the impact of different

failures it is beneficial to use the original topology, such that only the dipole inhomogeneity differs—not the

electrostatic problem itself. Then, the strength of the dipole depends on the network topology via the

prefactor ( )†Bb1 rs rs rs
1.

Using the analogy to electrostatics we can solve theflow rerouting problem for regular network topologies

(section 4) and provide some general rigorous results (section 6.1). To understandflow rerouting in networks
with complex topologies, we thus have to account for the spatial spreading pattern described by †B (see

section 6.3) aswell as the dipole strength, which quantifies the gross response of the grid (see section 5).

4. Failures in regular networks and the continuum limit

To obtain afirst insight into the spatial aspects of flow rerouting, we consider an elementary example admitting a

solution in the continuum limit. Consider a regular square lattice embedded in a plane as depicted infigure 1

and studied in a slightly different form in [48]. All nodes are labeled by their positions ( )r x y, in this

4
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two-dimensional embedding and the lattice spacing is denoted as h.We introduce continuous functionsψ and b

such that ( )x y, is the potential of the node at ( )x y, and ( )b x h y2, is theweight of the link connecting the

two nodes at ( )x y, and ( )x h y, . The left-hand side of the Poisson equation (18) evaluated at position ( )x y,

reads

( )( ) ( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( )] ( )[ ( ) ( )]

· ( ( ) ) ( ) ( )

B x y b x h y x y x h y b x h y x y x h y

b x y h x y x y h b x y h x y x y h

h b x y h

, 2, , , 2, , ,

, 2 , , , 2 , ,

, . 202 3

Here, wemade use of the fact that the components of the gradient ( ),x y may be expressed as

( ) ( ) ( )x y

x

x h y x y

h

,
lim

, ,
,

h 0

but did not take the limit yet. The derivative with respect to ymay be calculated analogously.

Before we proceed to the right-hand side, we remark that theflow changes F according to equation (14)

are given by

( ) ( )( ( ) ( ))

( ) ( )( ( ) ( ))

/ /

/ /

F

F

F h x h y b x h y x h y x y

h x y h b x y h x y h x y

2, 2, , , ,

, 2 , 2 , , ,

mn x

y

where ( )m n, denotes the linkwhere theflow changes aremonitoredwhich is either oriented parallel to the

x-axis, thus considering Fx or the y-axis, thus considering Fy. If we divide by h and take the continuum limit
h 0 the overall continuous flow changes read thus

( ) ( ) ( ) ( )F x y b x y x y, , , . 21

Note that the expression F refers to the change inflowdue to the link failure here and should not be confused

with the continuous Laplace operator.

The right-hand side of the discrete Poisson equation (18)maybe calculated similarly noting that only two

nodes contributewith opposite signs. Let us assume that the failing link is parallel to the x-axis connecting nodes r

and s located at ( )r x y,r r r and ( ) ( )r x y x h y, ,s s s r r . Thediscrete version of the right-hand side reads

†
q

B

F

b1
.rs

rs rs rs
rs

Wewill nowderive the continuumversion of this equation. First, theflowon the failing link before the outage Frs
may be calculated as

( )( ( ) ( ))

( ) ( )

( ) ( )F

F b x h y x h y x y

hb x y
x

h

h x y h

2, , ,

,

, ,

rs r r r r r r

r r

x r r

2

2

where ( ) ( ) ( )F x y b x y x y, , , is the continuum flowbefore the outage. Second, the vector rs can be

formally interpreted in terms of the two-dimensional delta function ( )x y, and reads for the given link failure

Figure 1. Impact of a link failure in a homogeneous square lattice. (a)Normalized change of the nodal potentials n, which are the
nodal phase angles when referring to power grids, for a networkwith uniform edgeweights for a single failing link located in the center
of the network. The size of the nodes aswell as the colorcode represent the strength of the change in potential. The change is strongest
close to the failing link and decays with distance. (b)Normalized change of the linkflows Fmn for the same topology. Arrows and
color represent direction and strength of flow changes, respectively. The pattern corresponds to the one produced by an electrostatic
dipole in two dimensions.
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( ) ( )

( )
( )

x x h y y x x y y

h
x x y y

x
h

, ,

,
.

rs r r r r

r r 2

Finally, let us assume that a continuumversion of theGreen’s function †B exists. Then the denominatormay be

calculated as

( )( ) ( ) ( ) ( )

( )
( )

( )

† †

†

Bb h b x h y x x y y b x y x x y y x y

h b x y
b x y

x y
h

2, , , , d d

,
,

,

rs rs rs r r y r r x r r

r r

r r

2

2
2

3

where ( )†b x y, is the aforementioned continuumversion.

Thus, in total we obtain after expanding the entire right-hand side to lowest order in the continuum limit

( ) ( ) ( ) ( ) ( )Fq x y h x y x x y y h, , , . 22r r r r
2 3

Here, ( )F x y,r r is assumed to be parallel to the dipole axis, i.e. the direction of the link failure, which is either the
x- or the y-direction for the given setting.

We can now formally divide left-hand side (20) and right-hand side (22) by h2 and take the limit h 0 to

obtain thefinal continuum limit of the Poisson equation,

· ( ( ) ) ( ) ( )qb x y x x y y, , , 23r r

where the source term is ( ) ( )q Fx y x y, ,r r r r , the unperturbed currentfield.We note that we obtain the same
continuum limit regardless of whetherwe use equation (17) or (18) to do the expansions. Thus, the non-locality

that is encoded in equation (18) is lost in the continuum formulation.

If the linkweights are homogeneous, ( )b x y b, , and the failing link is assumed to be located at the origin

( ) ( )x y, 0, 0r r the solution is given by thewell-known two-dimensional dipole field

( )
·

( )r
q r

r
, 24

2

⎛

⎝
⎜

⎞

⎠
⎟( ) ·

·
( )F r

q

r
r

q r

r
b 2 . 25

2 4

We thus obtain a fully analytic solution in the continuum limit. This solution reveals that the impact of link

failures decays algebraically in homogeneous lattices.We consider this decay along two different axes. Assume

the dipole to be located at the origin in x-direction, such that ( )q , 0 where 1 is some small real
number. First, consider the decay in x-directionwhere ( )r x, 0 . In this case, we obtain for the decay of the

potential and theflow changes

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

(( ) )
·

(( ) )F

x
x

x x

x b
x

x
x

x
b

x

, 0
1

,

, 0 2 , 0 , 0 .

2

2 4 2

This decay in theflow changesmay also be observed in the discrete version of equation (22) and is shown in

figure 2(a), for a line failure in a discrete square grid. Along the same lines, wemay quantify the decay in

y-directionwhere ( )r y, for the same dipole orientation. In this case, we obtain

⎛

⎝
⎜

⎞

⎠
⎟

(( ) )

(( ) )
∣ ∣

F

y
y y

y b
y y

,
1

, , 2 .

2

2 2

2

2

3

Here, we assumed the position vector to be dominated by its y-component, y such that ∣∣ ∣∣ ∣ ∣r y . In total,
we observe a y 3-scaling in theflow changes in y-direction perpendicular to the dipole source and a y 2-scaling

in y-direction parallel to the dipole source, seefigures 2(a)–(c).

5. Rigorous bounds on the dipole strength

Wenow turn to realistic networks with irregular topologies. The change in the nodal potentials or voltage phase

angles n andflows Fm n is determined by the discrete Poisson equation (18).We first consider the right-hand

side of this equation, the dipole strength, which describes the gross response of the networkflows to the outage.

This response is proportional to the initial flowof the failing edge Frs and the factor

6
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( ) ≕ ( ( )) ( )†Bb r s1 1 , . 26rs rs rs
1 1

The factor ( )r s1 , describes the non-locality of the network response to a local perturbation at link

( )r s, . To see this, consider a gridwhere the real power P is injected andwithdrawn at the terminal nodes of the

link ( )r s, . The direct flowover the link is given by

( ) ( )†BF b P r s P, , 27r s rs rs rs

whereas the totalflow is just given by P . The factor ( )r s, thusmeasures the fraction of theflowwhich is

transmitted directly and ( )r s1 , is the fraction transmitted non-locally via other pathways.Hence,

( )r s1 , can also be seen as ameasure of redundancy. A high non-localflow indicates that there are strong

alternative routes from r to s in addition to the direct link ( )r s, . If no alternative path exists, theflowmust be

routed completely via the direct link such that ( )r s1 , 0.

We conclude that the properties of alternative and direct paths are decisive for the understanding offlow

rerouting. Before we proceed, we thus review the formal definition of a path in graph theory.

Definition 1.Apath fromvertex r to vertex s is defined as an ordered set of vertices

( ) ( )v r v v v s, , , , , 28k0 1 2

where two subsequent verticesmust be connected by an edge andno vertex is visited twice. Two paths are called

independent if they share no common edge. The unweighted length of such a path is defined as the number of
steps k, while theweighted path length is given by the sumof the edgeweights along the path, wj

k
v v1 j j1

. In this

work, the edgeweights are given by the inverse susceptances w b1ij ij. The (weighted or unweighted) geodesic
or shortest path distance of two vertices r and s is defined as the (weighted or unweighted) length of the shortest

path from r to s.

The interpretation as a redundancymeasure directly relates the factor ( )r s1 , to the topology of the

network. Afirst rough estimate can be obtained from the topological connectivity ( )r s,T , which is defined as

Figure 2. Scaling of LODFs versus geodesic distance to failing edge for different unweighted topologies and different levels of sparsity.
(a)–(c)LODFs are evaluated in different directions from the link failure and averaged over 100 realizations of square lattices from
which a fraction of s 0 (black circles), s 0.05 (red crosses) and s 0.1 (blue plusses) links was removed randomly. The failing
edge is assumed to be located in x-direction at the center of a square grid of size 201×202, see figure 1. LODFs are calculated for (a)
links along the x-direction (between ( )x, 0 and ( )x 1, 0 ), (b) links along the y-direction parallel to failing link (between ( )y0, and
( )y1, ) and (c) links along the y-direction perpendicular to the failing link (between ( )y0, and ( )y0, 1 ). The dist 2 (a), (b) and
dist 3 (c) scaling agrees with the dipole scaling predicted using equation (25) as indicated by black lines. The levels of sparsity
considered here do not show any effect on the scalingwhen considering directions parallel to the dipole axis (a), (b), but the scaling
becomesmore long-rangedwith increasing sparsity in direction perpendicular to this axis (c). (d)The dist 2 scaling is not unique to
square grids (purple squares, size 1000×1000) butmay also be observed for the two other regular tilings, namely the hexagonal grid
(orange hexagons, 150×150 hexagons) and the triangular grid (green triangles, size 1001×500). LODFswere again computed
along the shortest path in x-direction for links oriented parallel to the dipole. The branching for the hexagonal grid is due to the fact
that the path in x-direction is non-unique andnon-straight here, such that one of the shortest paths was chosen arbitrarily. Deviations
from the scaling occur for large distances due tofinite-size effects.
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the number of independent paths fromnode r to node s. A comparison for several test grids infigure 3 shows

that ( )r s, decreases with ( )r s,T on average as expected, but that there is a large heterogeneity between the

links.

To obtain a better topological estimate for the locality factorwe need to take into account the heterogeneity

of the linkweights. The topological connectivity ( )r s,T counts theminimumnumber of edges which have to

be removed to disconnect the nodes r and s.We can define aweighted analog ( )r s,F as theminimum capacity

which has to be removed to disconnect the nodes r and s. This is a classical problem in graph theory, where it is

referred to as theminimum cut [50].Wewill now elaborate this quantity in a definition. An ( )r s, -cut can be

defined as follows. Let r S V and ⧹s V S be two vertices taken from the two disjoint sets. The ( )r s, -cut is

defined as the set of edges ( ) {( ) ∣ ⧹S u v E u S v V S, , or ⧹ }v S u V S, connecting the two

disjoint vertex-sets. The set of edges ( ) {( ) ∣ ⧹ }S u v E u S v V S, , is referred to as the forward edges

of the cut. The capacityC of a cut ( )S and the correspondingminimumcapacity ( )r s,F between r and s are

then given by

( ( ))

( ) ( ( ))

( ) ( )

{ ∣ ⧹ }

C S b

r s C S

,

, min .

i j S

ij

F
S V r S s V S

,

,

By virtue of themax-flow-min-cut theorem [51], ( )r s,F is equivalent to themaximumflowwhich can be

transmitted from r to s respecting link capacity limits:

( )

∣ ∣ ( )

( )

r s F

F b m n

F m r s

, max

such that edges ,

and 0 , . 29

F
F

n

N

r n

mn mn

n

N

mn

1

1

Numerous efficient algorithms exist to calculate thismaximumflowwithout performing the optimization

explicitly [51]. The ratio ( )b r s,rs F then gives the ratio of direct flow to totalflow from r to s and thus provides

an adequate topology-based estimate for the locality factor ( )r s, . Indeed, we can prove that it provides a

rigorous lower bound.

Figure 3.The locality factor ( )r s, generally decreases with the topological connectivity ( )r s,T . Values of ( )r s, for all links ( )r s,
with given value of ( )r s,T are shown in a box-whisker-plot: the cross gives themean, the read line themedian, the box the 25%/75%
quantiles and the and the grey horizontal line the 9%/91%quantiles. Results are shown for three standard test grids: (a) ‘case118’, (b)
‘case1354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient ρ andKendall’s rank correlation coefficient τ
are given for each test grid.
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Proposition 1.The algebraic locality factor ( )r s, is bounded by

( )
( ) ( )

b

r s
r s

,
, 1. 30rs

F

Aproof is given in appendix A.Numerical simulations for several test grids reported infigure 4 reveal that the

topological estimate not only provides a lower bound, but a high-quality estimate for the algebraic locality factor.

The Pearson correlation coefficient ρ between ( )r s, and ( )b r s,rs F exceeds 0.92 for the three grids under

consideration.

We arrive at the conclusion that the dipole strength given by ( ( ))F r s1 ,rs
1 generally decreases with the

redundancymeasures ( )r s,T and ( )r s,F .

An upper limit for the locality factor ( )r s, can be obtained from an elementary topological distance

measure.We consider theweighted geodesic distance of the twonodes r and s after the failure of the direct link

( )r s, , whichwe denote by ( )r sdist ,1
w . The superscript w stands forweighted distance, the subscript 1 for the

distancemeasured in the graph after removal of the link ( )r s, .We then have the following upper bound.

Proposition 2.The algebraic locality factor ( )r s, is bounded from above by

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( )r s

b r s
, 1

1

dist ,
. 31

rs 1
w

1

Aproof is given in appendix B.Numerical simulations for several test grids reported in figure 5 reveal that the

estimate in terms of the shortest path length not only provides an upper bound, but a high quality estimate for

the algebraic locality factor. The Pearson correlation coefficient ρ exceeds 0.94 for the three grids under

consideration.

We further note that the factor †Brs rs can also be interpreted as a distancemeasure—the resistance

distance [52, 53].We come back to the quantification of distances inflownetworks later in section 6.3.

6. Spatial distribution offlow rerouting

Wenow turn to the spatial aspects offlow rerouting in general network topologies.Wefirst discuss some

rigorous results, showing how the network topology determines the rerouting flows. Then, we return to the

Figure 4.The locality factor ( )r s, is estimated by the topology basedmeasure ( )b r s,rs F with high quality. Results are shown for
three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient ρ and
Kendall’s rank correlation coefficient τ are given for each test grid. The black line is the lower bound given by proposition 1.
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regular tilings and study the effect of increasing sparsity in these topologies on the dipole scaling. Finally, we

suggest a newmeasure of distance for flow rerouting and examine its performance on realistic network

topologies taken frompower grids.

6.1. Rigorous results

To start off, wefirst present a lemmadue to Shapiro [54], relating theflow changes after a link failure in an

unweighted graph solely to the topology of the underlying network.

Lemma1.Consider an unweighted network with a unit dipole source along the edge ( )r s, , i.e. a unit inflow at node r

and unit outflow at node s. Then the flow along any other edge ( )m n, is given by

( ) ( )
F

r m n s r n m s, , , ,
,m n

where ( )r m n s, , is the number of spanning trees that contain a path from r to s of the form r m n s, , , , ,

and is the total number of spanning trees of the graph.

This lemma exactly gives the LODFs in terms of purely topological properties—the number of spanning

trees containing certain paths. A generalization of this theorem toweighted graphswas recently presented

in [55].

However, counting spanning trees is typically a difficult task such that these results are of limited use for

practical applications. Nevertheless, they reveal the importance of certain paths through networks whichwewill

analyze numerically inmore detail below. Beforewe turn to this issue, we derive someweaker, butmore easily

applicable rigorous results.

We expect that theflow changes Fmn decaywith distance as for the case of the square lattice analyzed in

section 4. Canwe establish some rigorous results on the decaywith distance for arbitrary networks? Consider the

outage of a single edge and assume that the network remains connected afterwards.We label the failing link as

( )r s, such that F 0r s w.l.o.g.Wefirst consider the change of the nodal potential or voltage phase angle n

and its decaywith distance to the failing link ( )r s, .More specifically, we define themaximumandminimum

values of n attained at a given distance:

Figure 5.Anupper bound for the locality factor ( )r s, is found in terms of the length of the shortest alternative path from r to s,
assigning to each link ( )m n, aweight bmn

1. The black line is the lower bound given by proposition 2 and the blue dots give results for all
links in three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. High values of Pearson’s correlation
coefficient ρ andKendall’s rank correlation coefficient τ show that the expression in proposition 2 provides a good estimate for the
locality factor ( )r s, , not only a lower bound.
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ℓ

( )

( )

u max

min .

d
n n r d

n

d
n n s d

n

,dist ,

,dist ,

0
u

0
u

Here, ( )n rdist ,0
u denotes the geodesic distance between two nodes n and r in the initial unweighted

graph (indicated by the superscript u for unweighted and subscript 0 for the initial pre-contingency network).

We thenfind the following result.

Proposition 3.Consider the failure of a single link ( )r s, with F 0r s in a flownetwork. Then themaximum

(minimum) value of the potential change n decreases (increases)monotonically with the distance to nodes r and s,

respectively:

ℓ ℓ

u u d d

d d

, 1 .

, 1 .
d d

d d

1 max

1 max

Aproof is given in appendix C.We thusfind that potential changes generally decreasewith the distance in

magnitude and so do theflow changes.Furthermore, we can exploit the analogy to electrostatics to gain an

insight into the scaling offlow changes with distance. As theflows are determined by a discrete Poisson equation,

a discrete version ofGauss’ theorem follows immediately.We note thatwe formulate this result in terms of the

original network topology, seeequation (18).

Lemma2.Consider the failure of a single link ( )r s, in a flownetwork and denote byV the set of vertices in the

network. For every decomposition of the networkV V V1 2 with r V1 and s V2 we have

( ( )) ( )F F r s1 , . 32
m V n V

m n rs

,

1

1 2

That is, for each decomposition the total flow between the two partsV1 andV2 equals the dipole strength.

This lemma supports the intuitive expectation that on average flow changes decaywith distance inmeshed

networks: chooseV1 to include all nodes which are closer to r than to s and have a distance to r smaller than a

given value

{ ∣ ( ) ( ) ( )}V n V r n d r n s ndist , ; dist , dist , .1 0
u

0
u

0
u

With increasing value of d the number of nodes inV1 increases and typically the number of edges betweenV1

andV2 increases, too. The totalflowover these links remains constant according to lemma 2, such that the

average flowwill generally decrease. The exact scaling of the number of edges betweenV1 andV2 of course

depends on the topology of the network.

One can furthermore show that a sufficient connectivity is needed for perturbations to spread. Generally,

flow can be rerouted via an edge ( )m n, only if it can enter and leave the link via two independent paths. One can

thus prove the following statement [55, 56].

Proposition 4.The line outage distribution factor ℓLODFe, between two edges ( )e m n, and ℓ ( )r s, vanishes

if there are less than two independent paths between the vertex sets { }r s, and { }m n, .

6.2. Impact of network topology

Now that we derived rigorous results on the scaling of LODFs, wewant to study the influence of network

connectivity on the scaling inmore detail.

To do so, wefirst compare the scaling obtained for the square grid to the one in the other two regular tilings

of two-dimensional space, namely the hexagonal grid and the triangular grid. In perfect realizations of these

grids, each node has a degree of deg 3hex and deg 6tri , respectively, whereas the degree for the square grid

reads deg 4sg . Infigure 2(d), the LODFs are evaluated for these three topologies with increasing geodesic

distance from the failing edge located again in the center of the networks between the nodes at ( ) ( )x y, 0, 0r r

and ( ) ( )x y, 1, 0s s . The quadratic scalingwith the geodesic distance in x-direction x 2 (black, dotted line) is
preserved for all three topologies, i.e. the triangular grid (green triangles, bottom), the square grid (red squares,

center) and the hexagonal grid (blue hexagons, top). The grids used herewere of size 1000×1000 and

1001×500 nodes for the square grid and the triangular grid, respectively, and 150×150 hexagons for the
hexagonal grid.

Thus, the quadratic scaling is robust throughout different regular networks. However, real networks are in

general not regular. For this reason, we proceed by studying the effect of increasing sparsity in these regular

tilings. Define the sparsity [ ]0, 1 as the fraction of edges removed from the original graph.Wemake use
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New J. Phys. 21 (2019) 053009 J Strake et al



of two differentmethods to achieve increasing sparsity. Our firstmethod is a completely random removal of

edges in the graph followed bymeasuring the LODFs along a specified path. If an edge along the path does no

longer exist, we simply skip the edge. The results obtained from thismethod are shown infigures 2(a)–(c). There

is no change visible in the scaling of LODFs, except for the direction perpendicular to the dipole in panel (c). In

particular, only small values of sparsity ξ can be studied using thismethod, since a random removal of edgesmay

easily result in disconnected graphs. For this reason, wemake use of anothermethod.

For the secondmethod, wefirst construct an arbitrary spanning tree of the network after removal of the

failing edge. Then, we subsequently remove random edges from the graph that are not part of the tree until a

fraction ξ of its original edges is removed from the graph. This way, wemake sure that thewhole graph stays

connected at all times.We continue by constructing the shortest path from the failing edge (( ) ( ))0, 0 , 1, 0 to the

node located at ( )x , 0max and quantify the LODFs along this path.Note that using thismethod tomake a

graph sparser, we need to take into account the graph-specificmaximal sparsity Gmax, , i.e. the fraction of edges

whose removal would disconnect the graph. Assuming the initial tree to beminimal, this fractionmay be

calculated as 1 3max,hex , 1 2max,sg and 2 3max,tri for the hexagonal grid, square grid and triangular

grid, respectively.

Using this procedure, we can quantify the scaling of LODFs in grids with increasing sparsity. The direct

assessment of a scaling exponent is difficult for sparser graphs due to the large spread in LODF values, see

figure 6(a). This is whywe construct a differentmeasure to quantify this scaling.We consider the effective

exponent ( )k , where ξ is the graph’s sparsity, and assume a scaling of the form

∣ ( )∣ ( )r rLODF , k

in some region of the geodesic distance rr from the link failure. This effective exponent is calculated as

follows

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟( )

∣ ( )∣

∣ ( )∣

[ ]

[ ]

k
r

r
log

LODF ,

LODF ,
,

r w w

r w w

5
5 10 ,5 10

10 ,10

1 1

1 1

Figure 6. Increasing sparsity leads tomore long-ranged effects of link failures in regular grids. (a)Exemplary scaling of LODFs in a
square grid of size 500×500with increasing sparsity (colors fromdark to light purple), now achieved through the removal of edges
not contained in an arbitrary spanning tree. (b)Whereas the effective exponent shows no change and thus still obeys approximately
the inverse-square law for all topologies, (c) the logarithmic ratio between LODFswith andwithout sparsity at a certain distance
increases on averagewith increasing sparsitiy. Boxplots are shown for 100 realizations of the hexagonal grid (left, orange), square grid
(purple, center) and triangular grid (green, left) choosing a random spanning tree as the basis for edge removal for each realization and
value of sparsity.
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where w is a window specifying the range to average over in order to smooth the LODF values considered.

We chose awindow size of w 2when calculating the effective exponent in practice whichwe found to result in

a good compromise between smoothing and completely removing the trend.However, we did not observe a

strong effect of thewindow size on the results. In addition to that, we chose to compare the LODFs at values

centered around r=101 and r=5 101when calculating the effective exponent since using this range allows

us to capture only the intermediate range of the curve. For larger distances from the failing link,finite size effects

prevent the assessment of the exponent whereas for smaller distances, the LODFdoes not yet decaywhen

considering high values of sparsity due to a lack of alternative paths, asmay also be observed infigure 6(a).

For a perfect inverse square law ∣ ∣ rLODF 2 and a vanishingwindow w 0, this parameter yields
( )k log 5 25

2 as required. Infigure 6(b), it can be observed that this effective exponent stays
approximately constant at k 2 over different values of sparsity and the three different topologies considered,

where results for each value of sparsitywere obtained using 100 random realizations of edge removals andwith

the same grid sizes as stated previously.

To further quantify the effect of increasing sparsity in regular networks, wemake use of anothermeasure

whichwe refer to as the LODF ratio ( )Rw . It is simply calculated as the logarithmic ratio between the LODFs

with andwithout sparsity, again averaged over afixedwindow of distances

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟( )

∣ ( )∣

∣ ( )∣

[ ]

[ ]

R
r

r
log

LODF ,

LODF , 0
.w

r w w

r w w

10
10 ,10

10 ,10

1 1

1 1

Note that we evaluate this parameter at a distance of 101 butwe found the parameter to yield similar values for all

distances considered. A parameter of ( )R 1w then represents a tenfold increase in the LODFs as compared to

the networkwithout any edges removed. Infigure 6(c), this parameter is shown for the different topologies and

sparsities. Here, a window size of w 5was used. An increase with increasing sparsity is clearly visible. In

particular, the LODFs increase on averagemore than tenfold close to the highest possible values of sparsity.

In total, we observe that the scaling exponent derived from the dipole analogy in section 5 holds for the

regular networks evenwhen removing a large fraction of their edges. On the other hand, the LODF values at a

certain distance from the failing link show an increase with increasing sparsity, such that the actual effect of a link

failure can be up to tenfold stronger than for the corresponding regular gridwith no links removed. Thus, the

overall effect of a link failure ismore long-ranged in a sparser network, although no change in the effective

exponent can be observed.

6.3. Scalingwith distance

The impact of a link failure generally decays with distance.While the definition of distance is straightforward in

regular lattices, differentmeasures aremeaningful in networkswith complex topologies. The geodesic distance

of two links follows fromdefinition 1 for two vertices

[( ) ( )] ( )
{ } { }

r s m n v v
w w

edist , , , min dist ,
2

.
v r s v m n

rs mn
ge
w

, , ,
0
w

1 2
1 2

Here,wrs /b1 rs is the edgeweight assigned to the edge ( )r s, .When considering the unweighted analog, the

edge distance is defined analogously setting all edgeweights to one. The additional term
w w

2

rs mn ensures that

neighboring edges have non-zero distance, e.g. unity distance edist 1ge
u in the unweighted case. However, this

distance is a bad indicator forflow rerouting in real-world irregular topologies. An example shown infigure 8

demonstrates that this simple distance is only weakly correlatedwith themagnitude of the LODFs for a real-

world power grid test case.

Instead, we need a distancemeasure based onflow rerouting. If a link ( )r s, fails, theflowmust be rerouted

through other pathways, as described by the electrical lemma 1.However, it is not feasible to take into account all

spanning trees which govern theflow rerouting. In order to still be able to estimate the impact on another link

( )m n, , wewill thus consider a path from r to s that crosses this link. Themain difference to the ordinary

graph theoretical distance is that we have to take into account a path back and forth.We are thus led to the

following definition.

Definition 2.A rerouting path fromvertex r to vertex s via the edge ( )m n, is a path

( ) ( )v r v v m v n v v s, , , , , , , 33i i i k0 1 1 2

or

( ) ( )v r v v n v m v v s, , , , , , , , 34i i i k0 1 1 2

where no vertex is visited twice. The rerouting distance between two edges ( )r s, and ( )m n, denoted by

[( ) ( )]r s m nedist , , ,re
u w is the length of the shortest rerouting path from r to s via ( )m n, plus the length of edge
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( )r s, . Equivalently, it is the length of the shortest cycle crossing both edges ( )r s, and ( )m n, . If no such path

exists, the rerouting distance is defined to be .

The definition of a rerouting path is illustrated infigure 7. Again, we consider aweighted and an unweighted

version of this distance indicated by the superscriptw and u, respectively.We note that the length of the edge

( )r s, is included in order tomake the distancemeasure symmetric. In appendixD, we show explicitly that this

definition satisfies the axioms of ametric and discuss how to compute the shortest rerouting path.

An example of rerouting distances in comparison to the LODFs is shown infigure 8 for a small test grid.We

observe amuch better correlation in comparison to the ordinary geodesic distance defined above. The limitation

of geodesic distances becomes especially clear for situations described by proposition 4. If exactly one

independent path exists between two links, the rerouting distance is , while the geodesic distance isfinite.

Hence, the latter fails to explainwhy the LODF between the two links vanishes.

To further investigate the importance of distance, we simulate all possible link failures in four test grids of

different size. For every failing link ( )r s, we evaluate the geodesic distance aswell the rerouting distance to all

Figure 7. Illustration of two different distancemeasures between two links ( )r s, and ( )m n, (coloured in yellow and dark blue).
(a)The common geodesic or shortest-path distance (indicated by lines coloured in light blue). (b)The rerouting distance is defined as
the length of the shortest path from r to s crossing the link ( )m n, and is indicated by thick arrows and lines colored in light blue. The
sample network in thisfigure is based on the topology of the IEEE 14-bus test grid [57].

Figure 8. Line outage distribution factors (LODFs) in comparison to the unweighted geodesic and rerouting distances. (a)Magnitude
of the LODFs in the IEEE 30-bus test grid ‘case30’ [57]. The failing link l ismarked in red. (b)The geodesic distance to the failing link
edistge

u . (c)The rerouting distance to the failing link edistre
u . (d), (e) LODFs versus geodesic and rerouting distance (blue dots) including

an exponential (red solid line) and an algebraic (black dashed line) least-squares fit to the data. Due to the lownumber of data points, a
clear decisionwhether the correlation is algebraic or exponential is not possible.
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other links in the grid. To quantify towhich extend the distance predicts themagnitude of the LODFs, we then

calculate theKendall rank correlation coefficient τ [58]. This coefficient is used on ordinal data and assumes

values in the interval [ ]1, 1 . A value of (minus) one indicates perfect (anti)correlation, whereas a zero value

implies no correlation between the data. Table 1 shows the results, averaging over all trigger links ( )r s, in the

respective grid discarding bridges. The rank correlation is negative as LODFs generally decaywith distance. The

magnitude of the rank correlation is significantly higher for the rerouting distance. In particular for the test grid

‘case1354pegase’we see that the ordinary geodesic distance has a very limited predictive power for the LODFs

(∣ ∣ 0.25), while the rerouting distance is strongly correlated to themagnitude of the LODFs (∣ ∣ 0.83).

Figure 9 illustrates this discrepancy in the distribution of τ values for the different distancemeasures for the test

grids ‘case118’ and ‘case1354pegase’.We are thus led to the conclusion that geodesic distances are of limited

interest when considering the impact of link failures and should be replaced by othermeasures such as rerouting

distances. Notably, we observe nomajor difference when comparingweighted and unweighted distances.

7. Conclusion

Link failures representmajor threats to the operation of complex supply networks across disciplines. In this

article, we examined the impact of such failures in terms of the induced flow changes, which are commonly

described by LODFs.We providemathematically rigorous results and extensive numerical simulationswith a

focus on the gross network response (i.e. the dipole strength), the scaling offlow changes with distance and the

Table 1.Average of theKendall τ rank correlation values formagnitude of
LODF versus different distancemeasures. The four different IEEE test cases
consistently show a higher degree of correlation between rerouting distances
and LODF than between geodesic distances and LODF in bothweighted and
unweighted cases, while the unweighted rerouting distance slightly
outperforms theweighted one. For examplary distributions of the τ values see
figure 9.

test grid
Rank correlation τ for ∣ ∣LODF versus distance

Geodesic distance Rerouting distance

unw. weighted unw. weighted

case30 −0.4027 −0.4015 −0.8528 −0.8440

case118 −0.6069 −0.5233 −0.8211 −0.7920

case1354pegase −0.2269 −0.1341 −0.8664 −0.8438

case2383wp −0.3604 −0.2318 −0.7213 −0.6066

Figure 9. ((a), (b), top)Normalized histograms of the Kendall τ rank correlation for themagnitude of LODF and unweighted geodesic
distance and ((c), (d), bottom) ∣ ∣LODF and unweighted rerouting distance between two links in the IEEE test cases 118 (a), (c) and
1354pegase (b), (d). Vertical red lines show the average of the distribution of tau values (see table 1). The stronger correlation of the
rerouting distancewith the LODFs as compared to the geodesic distance is clearly visible.
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role of network topology. These quantities are crucial to understand the global robustness of supply networks as

each failure can trigger a cascade of secondary failures with potentially catastrophic consequences.

First, we demonstrated rigorously that theflow changes created by a single failure in a square lattice

correspond to thefield of an electromagnetic dipole. Hence the effects of a failure decaywith the distance

following an inverse-square law. The dipole analogy developed here allows for an analytical expression

describing the spreading of link failures. Although this treatment is rigorously valid only in the continuum limit,

we showed that the observed scaling extends to the other regular tilings of two-dimensional space even after

removing a fraction of links. Thus, we conclude that the scalingmay be expected to hold also for realistic

topologies.

Increasing the sparsity of a network promotesmore long-ranged effects up to the point where two links are

only related by one independent pathway. Then, a rerouting between the two links becomes impossible and a

failure of one link does not affect the other.However, this also implies a lack of redundancy such that a link

failure can have catastrophic consequences locally. Our results thus suggest that sparsity promotes non-local

responses to line failures. This is of potential relevance to the understanding of cascading failures, where

previous outages increase sparsity, and deserves further study.

In real-world irregular networks, the gross response of a failure depends on the loading of the link as well as

the local network structure. Rigorous upper and lower boundswere given for the dipole strength relating it to the

redundancy of the failing link. Furthermore, the commonnotion of a geodesic graph distance is of limited use to

predictflow rerouting.We thus introduced a rerouting distancewhichwe showed to bemuchmoremeaningful

to predict the impact of failures.

Whereas the classical analysis of link failures relies heavily on simulation results, our results provide heuristic

methods and rigorous boundswhich allow for an analytical insight into the relationship between the structure of

a network and its robustness towards link failures. In particular for large networkswhere simulations are

difficult, our results allow for an a priori analysis of link failures andmight also be used to identify critical links,

for instance in terms of the locality factorwhich quantifies the response of a network to a single failure. This type

of analysis is aided by the general results on decay ofmaximalflow changes with geodesic and rerouting

distances.We expect that these results fit the better, themore heterogeneous or disordered a network is. Previous

studies [59] have shown that a strong heterogeneity of link parameters leads to a concentration offlows along the

shortest path. In this limit,flow rerouting should be fully dominated by the shortest rerouting path.

We expect our results to be applicable far beyond power grids since the linearized treatment extends to other

phenomena such as hydraulic or biological networks. The rerouting distance alongwith the bounds on the

locality factormay greatly simplify the study of link failures in all kinds of supply networks andmakes themmore

accessible.We expect our results on the scaling of LODFs for networks with increasing sparsity alongwith this

distancemeasure to help identifying critical parts and paths and improving the overall robustness of supply

networks.
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AppendixA. Proof of proposition 1

Proof.By definition, ( )r s, is given by theflow F Prs when the power P is injected at node r andwithdrawn

at node s, while there is no injection at any other node,

( )
F F P

F m r s

,

0 , ,
A.1n r n n n s

n m n

such that

( ) ( )r s
F

F
, . A.2r s

n r n

For the sake of simplicity, we choose P such that 1r s w.l.o.g. Then, the inverse of ( )r s, may be

calculated using the basic relation ( )F br s rs r s as
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. A.3rs

n rn

Wecannowuse that the potential drop over all other links in the network is smaller than for the link ( )r s,

∣ ∣ ( ), A.4m n r s

see proposition 3. If 1r s we thus know that
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Comparing to the expression (29) for ( )r s,F we see that two additional constraints have to be satisfied.

Additional constraints can only decrease theflow-valuewith respect to themaximum in equation (29) such that

we have

( )
( ) ( )

( )
( )

b

r s
r s r s

b

r s,
, ,

,
. A.8rs

F
rs

F

,

Appendix B. Proof of proposition 2

Proof.Consider first a reduced network consisting only of the link ( )r s, and the shortest alternative path

between the two nodes, whichwe denote as ( )j r j j j s, , , , n1 2 3 . Fixing the nodal potentials such that

1r s as in A, the direct flowover the link ( )r s, is given by

( )F b , B.1r s rs

whereas the indirect flowover the shortest alternative path is given by

[ ]

( )
( )

F F F

b b b

r s

1

dist ,
. B.2

r j j j j j

j j j j j j,
1

,
1

,
1 1

1
w

n n

n n

2 2 3 1

1 2 2 3 1

Nowconsider the initial network, towhich all edges have been reintroduced, wherewe keep the same difference

in nodal potentials 1r s whichmight require a different power injection P . The direct flow thus

remains the samewhile the totalflow can only increase because new alternative pathsmay be present such that

( )
( )F F F b

r s

1

dist ,
. B.3

n

r n r s r j rs

1
w2

Thuswe obtain (see equation (A.2))

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( )r s

F

F b r s
, 1

1

dist ,
. B.4r s

n

r n rs 1
w

1

,

AppendixC. Proof of proposition 3

In this appendixwe first give the proof for proposition 3 and then showwhen the decay becomes strictly

monotonous.

Proof.The proof is carried out by induction starting from d dmax.We only give the proof for themaximum,

the proof for theminimumproceeds in an analogousway.We assume that the network is large enough such that

d 2max , otherwise the statement is trivial anyway.
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(1) Base case d dmax: Consider the node n of the network for which ( )n r ddist , max and n assumes its

maximum un dmax
. By assumptionwe have ( )n rdist , 2 such that the node n cannot be adjacent to

the perturbed edge such that q 0n . The n-th component of equation (18) yields

( ) ( )

B B

B B .

nn n

m n

nm m

m n m r d

nm m

m n m r d

nm m

,dist , ,dist , 1max max

Wedefine the abbreviations

( )
( )

B C.1d

m n m r d

nm

,dist ,

and use some important properties of thematrix B:

( )
B n m B

B B B

0 for 0,

.
C.2nm d

nn d dmax max 1

Wecan furthermore bound the values of m in equation (C) by udmax
or ud 1max

, respectively, such that we

obtain

( )u
u u

u u . C.3d n
d d d d

d d
d d

1 1

1
1max

max max max max

max max

max max

(2) Inductive step d d 1: We consider the node n of the network with ( )n r ddist , and un d .

Starting from equation (18) and using the same estimates as above, we obtain

( )u

q B

B

u u u
. C.4d n

n
m n

nm m

nn

d d d d d d

d d d

1 1 1 1

1 1

Note that the inhomogeneity q 0n for all nodes except for n r .With the induction hypothesis
u ud d1 this yields

( )
( )u

B u B B u

B B B
u u , C.5d

d d d d d

d d d
d d

1 1 1

1 1
1

which completes the proof.

,

AppendixD. Rerouting distance

The rerouting distance introduced in definition 2 is a proper distancemeasure in the sense that it satisfies the

axioms of ametric as shown in the following lemma. It can be calculated bymapping it to the two-edge disjoint

shortest path problem,which can be solved by Suurballe’s algorithm [60]. Themapping is provided by the

lemma 4.

Lemma3.Consider an undirected graphwith non-negative (all-equal) edge weights. Then the rerouting distance

[( ) ( )]r s m nedist , , ,re
w u of two edges ( )r s, and ( )m n, satisfies the following properties.

(i) Positive definiteness:

[( ) ( )]r s m nedist , , , 0.re
w u

(ii) Symmetry:

[( ) ( )] [( ) ( )]r s m n m n r sedist , , , edist , , , .re
w u

re
w u
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(iii) Triangular inequality:

[( ) ( )] [( ) ( )] [( ) ( )]a b r s a b m n m n r sedist , , , edist , , , edist , , , ,re
w u

re
w u

re
w u

both in the weighted and unweighted case.

Proof.

(1) Positive definiteness: as long as all edge weights are non-negative, all paths lengths and hence also the

rerouting distances are non-negative.

(2) Symmetry: suppose

( ) ( )v r v v m v n v s, , , , , D.1i i k0 1 1

is the shortest rerouting path from r to s via ( )m n, . Then

( ) ( )v n v v s v r v v m, , , , , , , D.2i i k i1 2 0 1

is also a rerouting path from n tom via ( )r s, . One can then show that thismust be the shortest such

rerouting path via contradiction. So suppose that another path from n tom via ( )r s, ,

( ) ( )ℓu n u u s u r u u m, , , , , , , D.3j j j1 2 0 1

is shorter. Then the path

( ) ( )ℓv r v v m v n v s, , , , , D.4i i0 1 1

is a rerouting path from r to s via ( )m n, and it is shorter than than the one defined in equation (D.1). This

contradicts our initial assumption such that the path defined in equation (D.1) is the shortest rerouting path

from n tom via ( )r s, andwe obtain

[( ) ( )] [( ) ( )] ( )r s m n m n r sedist , , , edist , , , . D.5re
w u

re
w u

(3) Triangle inequality: let the paths

( )

( )

ℓ

ℓ

p v a v v m v n v b

p u m u u r u s u n

, , , , , ,

, , , , ,

i i

j j

1 0 1 1

2 0 1 1

be the shortest rerouting paths from a to b via edge ( )m n, and fromm ton via ( )r s, , respectively. Here, we

assume the paths to be oriented as v mi , v ni 1 and u r u s,i i 1 , but the proof is the same if

the order of these vertices in the path is reversed. In addition to that, we assume the two distances on the

right-hand side of the inequality to befinite, otherwise the proof is trivial.We can extend the path p2 to

become a cycle by adding the edge ( )n m, to the end of the path

( )ℓ ℓc u m u r u s u n u m, , , , , .i i2 0 1 1

Nowwe can explicitly construct a rerouting path from a to b via ( )r s, . Let u vj p be thefirst vertex that
appears in both p1 and c2 and let u vk q the last such vertex. In this case, one of the following paths is a

rerouting path from a to b via ( )r s,

( )

( )

ℓ

ℓ

p u a u u v v v u v u b

p u a u u v v v u v u b

, , , , , , , ,

or , , , , , , , , .

j p p q k q

j p p q k q

3 0 1 1 1

4 0 1 1 1

Assumewithout loss of generality that p3 is a rerouting path from a to b via ( )r s, . In this case, we obtain

[( ) ( )] (( )) ( )

(( )) ( ) ( )

(( )) ( ) (( )) ( )

[( ) ( )] [( ) ( )]

a b r s a b p

a b p c

a b p m n p

a b m n m n r s

edist , , , length , length

length , length length

length , length length , length

edist , , , edist , , , .

re
w u

3

1 2

1 2

re
w u

re
w u

Note that again the length of a path is the sumof the edgeweights of all edges in the pathwhen considering a

weighted graph.

,
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Lemma4.The shortest rerouting path form r to s via edge ( )m n, is given by the union of the edge ( )m n, and the two

edge-independent paths r m and n s or r n and m s whichminimize the total path length.

Proof.Assume that we have found a solution to the two-disjoint shortest path problem, i.e. we have found two

edge-independent paths

( ) ( ) ( )v r v v m u s u u s, , , and , , D.6i j0 1 0 1

whichminimize the total path length. By assumption the two paths are edge-independent such that

( ) ( )v r v v m u s u u s, , , , , D.7i j0 1 0 1

is a valid rerouting path. Now it remains to show that this path is indeed the shortest possible. So assume the

contrary, i.e. that there exists a path

( ) ( )w r w w m w n w s, , , , , D.8i i k0 1 1

which is shorter than (D.7). But then the two paths

( ) ( )w r w w m, , , D.9i0 1

( ) ( )w n w w s, D.10i i k1 2

are edge independent and have a shorter total path length than the two pathsD.6. Contradiction. ,
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