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Abstract

We report the phenomenon of frequency clustering in a network of Hodgkin-
Huxley neurons with spike timing-dependent plasticity. The clustering leads to
a splitting of a neural population into a few groups synchronized at different
frequencies. In this regime, the amplitude of the mean field undergoes low-
frequency modulations, which may contribute to the mechanism of the emer-
gence of slow oscillations of neural activity observed in spectral power of local
field potentials or electroencephalographic signals at high frequencies. In addi-
tion to numerical simulations of such multi-clusters, we investigate the mech-
anisms of the observed phenomena using the simplest case of two clusters. In
particular, we propose a phenomenological model which describes the dynamics
of two clusters taking into account the adaptation of coupling weights. We also
determine the set of plasticity functions (update rules), which lead to multi-
clustering.

Author summary

Synaptic plasticity is one of the key mechanisms that allow for neural networks
to adapt their structure. Depending on the mutual neural activity, the efficacy
of synapses may change, which results in short- or long-term potentiation or de-
pression of a synapse. In this paper we investigate the structural changes that
are caused by the spike timing-dependent plasticity (STDP), where the synaptic
weights are adapted depending on the difference of spiking times between the
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pre- and postsynaptic neuron. The adaptation is considered to be symmetric
as experimentally found for hippocampal synapses [1] and can also be derived
from asymmetric STDP under certain conditions [2]. In an adaptive network of
Hodgkin-Huxley neurons we observe the emergence of clusters of neurons that
are synchronized at different frequencies in different clusters. Our study shows
that such a self-organized cluster formation is robust against changes of plastic-
ity function. While the spiking frequency of each synchronized cluster appear
to be on the timescale of individual neurons, the amplitude of the mean field of
such cluster system can evolve at a few orders of magnitude slower timescales.
The reported slow modulations of the mean neural activity in a neural pop-
ulation with plasticity can explain the emergence of slow cortical oscillations
detected in the empirical data of spectral power of local field potentials (LFP)
and electroencephalographic (EEG) signals, which correlate with spontaneous
fluctuations of the blood oxygen level-dependent (BOLD) signals measured by
functional magnetic resonance imaging (fMRI) [3, 4].

Introduction

Clustering of the dynamics and coupling is observed at several scales of the
brain structure and function. For example, in the data measured by the func-
tional magnetic resonance imaging (fMRI), the brain networks form functional
clusters that can be seen in the matrices of the functional and effective connec-
tivities for task-based and task-free (resting state) paradigms [10, 5, 6, 7, 8, 9].
Clustering has also been observed for dynamic functional connectivity, where
the time courses of the connectivity exhibit a few discrete states with well pro-
nounced clusters [11]. Disruption of such clustered states of connectivity may
be associated with some brain disorders [12, 13]. It is therefore important to
investigate the emergence of clustering in neural populations that we address in
this study.

Neural networks are able to adapt their structure depending on the activ-
ity of the nodes or external stimuli [14]. One of the possible mechanisms of
such an adaptation, which may lead to persistent changes in neural connections
and relate to learning and memory, is synaptic plasticity [15]. The efficacy of
synapses to transmit the electrical potential between neurons may increase or
decrease depending on the mutual neural activity, which results in short- or
long-term potentiation or, respectively, depression of synapses [16, 17]. An ex-
ample is spike timing-dependent plasticity (STDP) which describes the synaptic
weight change as a function of the difference of spiking times between pre- and
post-synaptic neurons [18, 19, 20, 21, 22].

One of the famous plasticity rules, the Hebbian rule, assumes that the mod-
ifications of the synaptic weights are driven by correlations in the firing activity
of pre- and post-synaptic neurons. More specifically, it assumes that those
connections are potentiated, for which one neuron contributes to the firing of
another [15]. Nevertheless, in many publications, the Hebbian rule is considered
in a more narrow sense of a closeness between the spiking times: the smaller
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the distances between the spikes are the higher is the potentiation of the corre-
sponding synapse [23, 24]. In this work, we are dealing with spike-based learning
rules rather than rate-based.

Previous studies of neural networks with STDP showed that such networks
can evolve and create various coupling structures. For instance, the weights
can exhibit stable localized spatial structures, that can be interpreted as recep-
tive fields [25]. These structures can be either unidirectionally of bidirectionally
coupled, depending on the plasticity rule or external input properties. The
STDP mechanism plays an important role in temporal coding of information
by spikes [18, 25]. On the one hand, a synchronized firing in neural ensem-
bles with STDP can be stabilized through potentiation of synaptic coupling by
stimulation-induced transient synchronization of neurons [26, 27, 28, 29]. On the
other hand, a desynchronized state can lead to a depression of synaptic weights
[26, 27]. Thus, neural networks with plasticity are prone to a co-existence of dif-
ferent stable dynamical and structural states, which may be realized by choosing
appropriate initial conditions or stimulation procedures.

Human brain networks demonstrate different degrees of modularity, some-
times with hierarchical features [30, 31, 32, 33, 34]. Recently, a hierarchical clus-
tering was observed in phenomenological models of adaptive networks of phase
oscillators [35, 36, 37]. As a result of an adaptation, the network evolved into
groups of strongly-connected clusters, while the coupling between the groups
was depressed. The stability analysis of such clusters reveals [37, 38] that the
preferred stable cluster configuration corresponds to significantly different sizes
of the clusters. The dynamics within each cluster are frequency-synchronized,
while the frequencies between clusters differ. Thus, self-organized emergence of
clusters leads to the emergence of different collective frequencies in the system.
The multi-stability of such clusters was also observed in ensembles of Morris-
Lecar bursting neurons with STDP in [39].

In this paper we report on the phenomenon of clustering with respect to con-
nectivity and frequencies in a network of adaptively coupled Hodgkin-Huxley
(HH) neurons. The spike timing-dependent adaptation is considered to be sym-
metric as experimentally found for hippocampal synapses [1] and can also be
derived from asymmetric STDP for an ”effective time window” [2]. Then the ob-
served clusters are bidirectionally coupled [39]. Splitting of a neural population
to a few clusters synchronized at different frequencies could lead to a slow wax-
ing and waning of the amplitude of the mean field, where the clusters transiently
gather together and move apart as the time evolves [39]. The frequency of such
a modulation of the mean neural activity could be much smaller than the firing
rate of individual neurons and depends on the differences between the clusters’
frequencies. The emergence of synchronized clusters could explain the origin of
the low-frequency modulation of the spectral power of macroscopic brain sig-
nals like local field potentials (LFP) or electroencephalographic (EEG) signals in
higher frequency bands, which also correlates with slow oscillations of the blood
oxygen level-dependent (BOLD) signal measured by fMRI [3, 4, 40, 41]. Several
other modeling studies have also reported on clustering in the neural popula-
tions with plasticity [42, 43, 39]. These clusters have been observed for different
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models that ranged from simple phase oscillators to the models of spiking and
bursting neurons and demonstrate stability with respect to heterogeneity of the
interacting neurons and random perturbations [42, 43, 39]. In this paper we
provide a simple phenomenological model and explain a mechanism governed
by synaptic plasticity of the stabilization of such clusters in a neural population.

The structure of the paper is as follows. In the first section we present
the model. The next section shows numerically observed multi-clusters. The
detailed mechanisms of the stability of frequency clusters is explained afterwards
using the simplest case of two clusters. Then we propose a phenomenological
model, which describes the dynamics of two clusters taking into account the
adaptation of the weights. The model is shown to reflect not only qualitative,
but also some basic quantitative properties of the two-cluster formation. We
also determine the set of plasticity functions (update rules), which lead to the
clustering.

Materials and methods

Model

The network of N HH neurons is described by the following system [44, 45, 28,
29]

CV̇i = Ii − gNam
3
ihi(Vi − ENa)− gkn

4
i (Vi − EK)− gL(Vi − EL)

−
(Vi − Er)

N

N
∑

j=1

κijsj ,

ṁi = αm(Vi)(1−mi)− βm(Vi)mi,

ḣi = αh(Vi)(1− hi)− βh(Vi)hi,

ṅi = αn(Vi)(1− ni)− βn(Vi)ni,

ṡi =
5(1− si)

1 + e(−Vi+3
8 )

− si.

(1)

Here Vi is the potential of the i-th neuron with the corresponding equilibrium
potentials ENa = 50mV, EK = −77mV, and El = −54.4mV. C = 1µF/cm2.
Our choice of Er = 20mV corresponds to the excitatory neurons. m, h, and n
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are gating variables, and their dynamics depend on opening and closing rates

αm(V ) =
0.1V + 4

1− e(−0.1V−4)
,

βm(V ) = 4e(
−V −65

18
),

αh(V ) = 0.07e(
−V −65

20
),

βh(V ) =
1

1 + e(−0.2V−3.5)
,

αn(V ) =
0.01V + 0.55

1− e(−0.1V−5.5)
,

βn(V ) = 0.125e(
−V −65

80
).

The parameters are gNa = 120mS/cm2, gK = 36mS/cm2, and gl = 0.3mS/cm2.
The constant current Ii is set to 9µA/cm2 so that the individual neurons are
identical and oscillatory.

The synaptic input current from j-th neuron is scaled by the synaptic strength
κij , which changes due to plasticity. The adaptation of κij occurs discontinu-
ously whenever one of the neurons i or j spikes. More specifically, the discon-
tinuous change is given by the following plasticity function

κij →











0, if κij + δW (∆tij) < 0

κij + δW (∆tij), if 0 ≤ κij + δW (∆tij) ≤ κmax

κmax, if κij + δW (∆tij) > κmax

(2)

where ∆tij = ti − tj is the spike time difference between the postsynaptic and
presynaptic neurons; δ > 0 is a small parameter determining the size of the
single update; κmax > 0 is the maximal coupling; and the plasticity function
[18, 19, 25, 20] is

W (∆tij) = cpe
−

|∆tij |

τp − cde
−

|∆tij |

τd (3)

with positive parameters cp, τp, cd, and τd. We also assume no autapses and set
κii = 0.

Example of the considered plasticity function W used in our simulations is
shown in Fig. 1. This is a symmetric function, which corresponds to a poten-
tiation of the coupling weights of the neurons with highly correlated firing. As
we will discuss at the end of the results section, there is a family of plasticity
functions of similar form that allow for the frequency clustering.

Results

Numerical observation of synchrony and frequency cluster-

ing

In order to investigate the dynamics of network (1), we initialize the neurons
and the coupling randomly and integrate the system numerically. For the pa-
rameter values τp = 2, τd = 5, cp = 2, cd = 1.6, and κmax = 1.5 we observe two
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of the inter-cluster synapses. Such a process is repeated every time the clusters
meet and is typical for the stable cluster states. A typical case of transient
clusters is presented in Fig. 8(D)-(F) for Ns = 9. The inter-cluster coupling is
again potentiated when the clusters meet, but it does not decrease again, and
the clusters merge in a single cluster of a fully coupled and synchronized regime
(Fig. 8(F)). The transient time that could be elapsed until the cluster fusion
depends on the cluster size as illustrated in Fig. 7(B).

Figures 8(G, H) show how the spiking frequency of the clusters change over
time. During the in-phase episode, the cluster with the higher natural spiking
rate slows down significantly, while the slower cluster (with larger number of
neurons Nb) speeds up a little. For a stable cluster state the cluster frequencies
again deviate from each other (Fig. 8(G)), whereas all neurons fire with the
same frequency when the clusters unite into one (Fig. 8(H)). We found this
phenomenon for different numbers of neurons and different κmax. Increasing
κmax increases the initial period difference, but the behavior in general stays
the same.

Figure 9 shows the dynamics of the mean synaptic activity S(t) = 1
N

∑N

i=1 si(t)
of the network in the case of two stable clusters, which models the dynamics of
LFP. During the in-phase episodes of the two clusters, S(t) has a higher am-
plitude, because both clusters spike synchronously. The maximum amplitude is
generated by maximum synchronization in the network. The low amplitude of
S(t), on the other hand, corresponds to the time intervals when the clusters are
out of phase. In the latter case, the mean synaptic activity shows two peaks,
the higher peak is generated by the larger cluster and the lower by the smaller
one, see Fig. 9(B). For the considered case, the synchronized oscillations of indi-
vidual neurons in the clusters take place at a time scale of several milliseconds
(period ∼ 15 ms, Fig. 9(B)), see also Fig. 8(G), (H). The neurons are tonically
spiking. The frequency difference ∆Ω between clusters is, however, of the order
of sub-Hz, because the corresponding cluster frequencies are close to each other
(Fig. 8(G), (H)). Then the modulation of S(t) is observed at a much slower
timescale of a few seconds, which is of two orders of magnitude slower than the
intrinsic neural firing, see Fig. 9(A), as observed in empirical data of the brain
activity [3, 4].

In the following section, a phenomenological model is introduced in order to
further investigate the dynamics of two clusters.

Phenomenological Model

Model derivation

In this section we introduce a reduced qualitative model for the coupling and
phase difference of two clusters. The model is based on the assumption that
oscillators are synchronized identically within each cluster and the coupling
between the clusters is weak. As a result, the interaction between oscillatory
clusters can be described in the framework of two coupled phase oscillators that
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small and it does not play important role in the qualitative behavior of the
model apart from a small shift of the synchronized state to ϕ = 0.

Another component of the model is the plasticity-driven changes of the cou-
pling σ. In order to derive the equation for σ, we consider the STDP update in
the case of a periodic motion of the clusters. We assume that the coupling σ
is proportional to an averaged coupling between the clusters. This is a natural
assumption in the case of weakly coupled systems. Let us find out how the up-
date of the intercluster coupling depends on the phase difference ϕ. For a given
phase difference ϕ and the frequencies ω1 = ω̄ + ω/2, ω2 = ω̄ − ω/2 (here we
introduced the mean frequency ω̄), the spiking period of the both clusters can
be approximated as T ≈ 2π/ω̄ up to small terms of order ω, and the distance
∆T between the spikes of two clusters

∆T =
[

T
ϕ1

2π
− T

ϕ2

2π

]

mod T =
[

T
ϕ

2π

]

mod T ≈
ϕ mod 2π

ω̄
.

Since the spike time differences ∆T and T−∆T occur recursively, see Fig. 10(B),
the updates per unit time sum to the function

δ

T
(W (T −∆T ) +W (∆T )) =

δω̄

2π
G(ϕ), (8)

where

G(ϕ) := W

(

2π − (ϕ mod 2π)

ω̄

)

+W

(

ϕ mod 2π

ω̄

)

. (9)

Since the update of σ is proportional to the obtained function, and taking
into account the smallness of δ, this update can be written as σ̇ = εG(ϕ),
where ε is a small parameter of the coupling adaptation that controls the scale
separation between the fast dynamics of the clusters and the slow dynamics of
the coupling.

Additionally, the coupling strength σ(t) should be bounded to the interval
[0, σmax] by imposing cut-off conditions. More specifically, the derivative σ̇ is
discontinuous at the boundaries σ = 0 and σ = σmax, i.e. σ̇ = max{0, εG(ϕ)}
for σ = 0 and σ̇ = min{0, εG(ϕ)} for σ = σmax. The considered cut-off corre-
sponds to ”hard” bound conditions [50]. Another possibility would be ”soft” or
”multiplicative” bounds [51], when the update is proportional to the distance
to the boundary. We consider here the hard bound, since it corresponds to the
hard bound of the STDP rule for HH system.

The final phenomenological model reads as follows

ϕ̇ = ω − σ sin(ϕ+ α), (10)

σ̇ = ε ·











G(ϕ) for 0 < σ < σmax,

max{0, G(ϕ)} for σ = 0,

min{0, G(ϕ)} for σ = σmax.

(11)

with frequency mismatch ω > 0 and α = sin−1(ω/σmax).
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Criteria for the emergence of clusters

Model (10)-(11) can be used to describe plasticity functions, which lead to
multiple clusters. For this, we investigate numerically the condition σ(ϕ∗) = σ∗.
More specifically, system (10)-(11) was initialized at the point (−ϕ∗, 0) and
numerically integrated forward in time. If σ(ϕ∗) < σ∗, the two clusters are
stable and do not merge. This procedure can be repeated for different parameter
values.

In order to restrict the set of plasticity parameters, we fix τp = 2 and τd = 5
and vary cp and cd. The results of the simulation are shown in Fig. 13(A). The
white, black and grey parameter areas correspond to the appearance of stable
periodic solution of (10)-(11) (case (II)), globally stable fixed point (case (I))
and the case (III), respectively.

In order to compare the parameter regions obtained for the phenomenological
model (Fig. 13(A)) with those for the original HH system, we ran numerical
simulations of system (1)-(3) with N = 50 neurons and Ns = 7 neurons in the
small cluster. Starting from the two-cluster state, we monitor the dynamics of
the clusters. Figure 13(B) shows the results: the white region corresponds to the
case when the clusters survive and stay apart after the simulation time 3000 ms,
black - when the clusters merge into one synchronous group, and grey - when
the clusters split into uncoupled neurons. This behaviour stays qualitatively the
same for different cluster sizes. However, depending on the frequency difference
between the clusters, the set of parameters allowing stable cluster states may
change its size.

Comparison of the results for the phenomenological system and the HH
system in the Figs. 13(A,B) shows that the phenomenological model provides a
reasonable approximation.

Conclusion

Our results show that adaptive neural networks are able to generate self-consistently
dynamics with different frequency bands. In our case, each cluster corresponds
to a strongly connected component with a fixed frequency. Due to a sufficiently
large difference of the cluster sizes and frequencies, the inter-cluster interac-
tions are depreciated, while the intra-cluster interactions are potentiated. In
this study, we describe the mechanisms behind the formation and stabilization
of these clusters. In particular, we explain why the significant difference be-
tween the cluster sizes is important for the decoupling of the clusters. From a
larger perspective, the decoupling of the clusters in our case is analogous to the
decoupling of timescales in systems with multiple timescales.

Furthermore, we present a two-dimensional phenomenological model which
allows for a detailed study of the clustering mechanisms. Despite of the approx-
imations made by the derivation, the model coincides surprisingly well with the
adaptive Hodgkin- Huxley network. Using the phenomenological model, we find
parameter regions of the plasticity function, where stable frequency clustering
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the present work shows that the slow oscillations of the population mean field
can also emerge when the firing of individual neurons is not affected. The neu-
rons may tonically fire at high frequencies. The amplitude of the population
mean field then oscillates at much lower frequencies due to the slow modulation
caused by the cluster dynamics.

Additionally, we would like to mention that the observed frequency clustering
resembles phenomenologically the weak chimera states [56, 57] where clusters
with different frequencies are formed in symmetrically coupled oscillators with-
out adaptation. However the properties and mechanisms of the appearance of
such clusters are different from those presented here, which are essentially based
on the slow adaptation.

To conclude, we observe self-organised emergence of clusters in neural net-
works with STDP. The clustering splits the neural population into groups syn-
chronised at different frequencies, which determine the dynamics of the clusters.
These cluster dynamics might play a role in low frequency oscillations during
the resting state and can be described by a two-dimensional model.
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