001     863003
005     20240709112129.0
024 7 _ |a 10.1016/j.jpowsour.2019.01.083
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000459839100021
|2 WOS
037 _ _ |a FZJ-2019-03150
082 _ _ |a 620
100 1 _ |a Li, Dongjiang
|0 P:(DE-Juel1)173718
|b 0
245 _ _ |a Degradation mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 Li-ion batteries unraveled by non-destructive and post-mortem methods
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582033341_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ageing mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 batteries at various discharging currents and temperatures have systematically been investigated with electrochemical and post-mortem analyses. The irreversible capacity losses () at various ageing conditions are calculated on the basis of regularly determined electromotive force (EMF) curves. Two stages can be distinguished for the degradation of the storage capacity at 30 °C. The first stage includes SEI formation, cathode dissolution, etc. The second stage is related to battery polarization. The various degradation mechanisms of the individual electrodes have been distinguished by vs and vs plots. The Solid-Electrolyte-Interface (SEI) formation as well as the electrode degradation has been experimentally confirmed by XPS analyses. Both Ni and Mn elements are detected at the anode while Co is absent, indicating that the bonding of Co atoms is more robust in the cathode host structure. A Cathode-Electrolyte-Interface (CEI) layer is also detected at the cathode surface. The composition of the CEI layer includes Li salts, such as LiF, LiCOOR, as well as transition metal compounds like NiF2. Cathode dissolution is considered to be responsible for both the NiF2 detected at the cathode and Ni at the anode.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Hu
|0 P:(DE-Juel1)168199
|b 1
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 2
700 1 _ |a Gao, Lu
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chen, Xiaoxuan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Zhongru
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhou, Jiang
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
700 1 _ |a Yang, Yong
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2019.01.083
|g Vol. 416, p. 163 - 174
|0 PERI:(DE-600)1491915-1
|p 163 - 174
|t Journal of power sources
|v 416
|y 2019
|x 0378-7753
909 C O |p VDB
|o oai:juser.fz-juelich.de:863003
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173718
910 1 _ |a TU Eindhoven
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)173718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a TU Eindhoven
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a TU Eindhoven
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a College of Chemistry and Chemical Engineering, Xiamen University
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a College of Chemistry and Chemical Engineering, Xiamen University
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Tianjin Lishen Battery Joint-stock, Tianjin, China
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165918
910 1 _ |a TU Eindhoven
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)165918
910 1 _ |a University of Technology Sydney
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21