000863055 001__ 863055
000863055 005__ 20210130001809.0
000863055 0247_ $$2doi$$a10.1103/PhysRevApplied.11.054087
000863055 0247_ $$2Handle$$a2128/22250
000863055 0247_ $$2WOS$$aWOS:000470891900002
000863055 0247_ $$2altmetric$$aaltmetric:50504969
000863055 037__ $$aFZJ-2019-03177
000863055 082__ $$a530
000863055 1001_ $$0P:(DE-HGF)0$$aValenti, Francesco$$b0
000863055 245__ $$aInterplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors
000863055 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2019
000863055 3367_ $$2DRIVER$$aarticle
000863055 3367_ $$2DataCite$$aOutput Types/Journal article
000863055 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559896451_31933
000863055 3367_ $$2BibTeX$$aARTICLE
000863055 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863055 3367_ $$00$$2EndNote$$aJournal Article
000863055 520__ $$aMicrowave kinetic inductance detectors (MKIDs) are thin-film, cryogenic, superconducting resonators. Incident Cooper pair-breaking radiation increases their kinetic inductance, thereby measurably lowering their resonant frequency. For a given resonant frequency, the highest MKID responsivity is obtained by maximizing the kinetic inductance fraction α. However, in circuits with α close to unity, the low supercurrent density reduces the maximum number of readout photons before bifurcation due to self-Kerr nonlinearity, therefore setting a bound for the maximum α before the noise-equivalent power (NEP) starts to increase. By fabricating granular aluminum MKIDs with different resistivities, we effectively sweep their kinetic inductance from tens to several hundreds of pH per square. We find a NEP minimum in the range of 30aW/√Hz at α≈0.9, which results from a trade-off between the onset of nonlinearity and a nonmonotonic dependence of the noise spectral density versus resistivity.
000863055 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000863055 588__ $$aDataset connected to CrossRef
000863055 7001_ $$0P:(DE-HGF)0$$aHenriques, Fabio$$b1
000863055 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b2
000863055 7001_ $$0P:(DE-HGF)0$$aMaleeva, Nataliya$$b3
000863055 7001_ $$0P:(DE-HGF)0$$aGrünhaupt, Lukas$$b4
000863055 7001_ $$0P:(DE-HGF)0$$avon Lüpke, Uwe$$b5
000863055 7001_ $$0P:(DE-HGF)0$$aSkacel, Sebastian T.$$b6
000863055 7001_ $$0P:(DE-HGF)0$$aWinkel, Patrick$$b7
000863055 7001_ $$0P:(DE-HGF)0$$aBilmes, Alexander$$b8
000863055 7001_ $$0P:(DE-HGF)0$$aUstinov, Alexey V.$$b9
000863055 7001_ $$0P:(DE-HGF)0$$aGoupy, Johannes$$b10
000863055 7001_ $$0P:(DE-HGF)0$$aCalvo, Martino$$b11
000863055 7001_ $$0P:(DE-HGF)0$$aBenoît, Alain$$b12
000863055 7001_ $$0P:(DE-HGF)0$$aLevy-Bertrand, Florence$$b13
000863055 7001_ $$0P:(DE-HGF)0$$aMonfardini, Alessandro$$b14
000863055 7001_ $$0P:(DE-HGF)0$$aPop, Ioan M.$$b15$$eCorresponding author
000863055 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.11.054087$$gVol. 11, no. 5, p. 054087$$n5$$p054087$$tPhysical review applied$$v11$$x2331-7019$$y2019
000863055 8564_ $$uhttps://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf$$yOpenAccess
000863055 8564_ $$uhttps://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863055 909CO $$ooai:juser.fz-juelich.de:863055$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b2$$kFZJ
000863055 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000863055 9141_ $$y2019
000863055 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863055 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000863055 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2017
000863055 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863055 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863055 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863055 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863055 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863055 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863055 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863055 920__ $$lyes
000863055 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000863055 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000863055 980__ $$ajournal
000863055 980__ $$aVDB
000863055 980__ $$aUNRESTRICTED
000863055 980__ $$aI:(DE-Juel1)PGI-2-20110106
000863055 980__ $$aI:(DE-Juel1)PGI-11-20170113
000863055 9801_ $$aFullTexts