Home > Publications database > Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors > print |
001 | 863055 | ||
005 | 20210130001809.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.11.054087 |2 doi |
024 | 7 | _ | |a 2128/22250 |2 Handle |
024 | 7 | _ | |a WOS:000470891900002 |2 WOS |
024 | 7 | _ | |a altmetric:50504969 |2 altmetric |
037 | _ | _ | |a FZJ-2019-03177 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Valenti, Francesco |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2019 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1559896451_31933 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Microwave kinetic inductance detectors (MKIDs) are thin-film, cryogenic, superconducting resonators. Incident Cooper pair-breaking radiation increases their kinetic inductance, thereby measurably lowering their resonant frequency. For a given resonant frequency, the highest MKID responsivity is obtained by maximizing the kinetic inductance fraction α. However, in circuits with α close to unity, the low supercurrent density reduces the maximum number of readout photons before bifurcation due to self-Kerr nonlinearity, therefore setting a bound for the maximum α before the noise-equivalent power (NEP) starts to increase. By fabricating granular aluminum MKIDs with different resistivities, we effectively sweep their kinetic inductance from tens to several hundreds of pH per square. We find a NEP minimum in the range of 30aW/√Hz at α≈0.9, which results from a trade-off between the onset of nonlinearity and a nonmonotonic dependence of the noise spectral density versus resistivity. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Henriques, Fabio |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Catelani, Gianluigi |0 P:(DE-Juel1)151130 |b 2 |
700 | 1 | _ | |a Maleeva, Nataliya |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Grünhaupt, Lukas |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a von Lüpke, Uwe |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Skacel, Sebastian T. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Winkel, Patrick |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Bilmes, Alexander |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Ustinov, Alexey V. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Goupy, Johannes |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Calvo, Martino |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Benoît, Alain |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Levy-Bertrand, Florence |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Monfardini, Alessandro |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Pop, Ioan M. |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevApplied.11.054087 |g Vol. 11, no. 5, p. 054087 |0 PERI:(DE-600)2760310-6 |n 5 |p 054087 |t Physical review applied |v 11 |y 2019 |x 2331-7019 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:863055 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)151130 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|