001     863055
005     20210130001809.0
024 7 _ |a 10.1103/PhysRevApplied.11.054087
|2 doi
024 7 _ |a 2128/22250
|2 Handle
024 7 _ |a WOS:000470891900002
|2 WOS
024 7 _ |a altmetric:50504969
|2 altmetric
037 _ _ |a FZJ-2019-03177
082 _ _ |a 530
100 1 _ |a Valenti, Francesco
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors
260 _ _ |a College Park, Md. [u.a.]
|c 2019
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1559896451_31933
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microwave kinetic inductance detectors (MKIDs) are thin-film, cryogenic, superconducting resonators. Incident Cooper pair-breaking radiation increases their kinetic inductance, thereby measurably lowering their resonant frequency. For a given resonant frequency, the highest MKID responsivity is obtained by maximizing the kinetic inductance fraction α. However, in circuits with α close to unity, the low supercurrent density reduces the maximum number of readout photons before bifurcation due to self-Kerr nonlinearity, therefore setting a bound for the maximum α before the noise-equivalent power (NEP) starts to increase. By fabricating granular aluminum MKIDs with different resistivities, we effectively sweep their kinetic inductance from tens to several hundreds of pH per square. We find a NEP minimum in the range of 30aW/√Hz at α≈0.9, which results from a trade-off between the onset of nonlinearity and a nonmonotonic dependence of the noise spectral density versus resistivity.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Henriques, Fabio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Catelani, Gianluigi
|0 P:(DE-Juel1)151130
|b 2
700 1 _ |a Maleeva, Nataliya
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grünhaupt, Lukas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a von Lüpke, Uwe
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Skacel, Sebastian T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winkel, Patrick
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bilmes, Alexander
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ustinov, Alexey V.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Goupy, Johannes
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Calvo, Martino
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Benoît, Alain
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Levy-Bertrand, Florence
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Monfardini, Alessandro
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pop, Ioan M.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.11.054087
|g Vol. 11, no. 5, p. 054087
|0 PERI:(DE-600)2760310-6
|n 5
|p 054087
|t Physical review applied
|v 11
|y 2019
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863055/files/PhysRevApplied.11.054087.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863055
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21