000863067 001__ 863067
000863067 005__ 20220930130213.0
000863067 0247_ $$2doi$$a10.3390/molecules24112129
000863067 0247_ $$2Handle$$a2128/22713
000863067 0247_ $$2altmetric$$aaltmetric:61973227
000863067 0247_ $$2pmid$$apmid:31195746
000863067 0247_ $$2WOS$$aWOS:000472631000102
000863067 037__ $$aFZJ-2019-03184
000863067 082__ $$a540
000863067 1001_ $$0P:(DE-Juel1)177882$$aZhang, Tao$$b0$$ufzj
000863067 245__ $$aInterference with Amyloid-β Nucleation by Transient Ligand Interaction
000863067 260__ $$aBasel$$bMDPI$$c2019
000863067 3367_ $$2DRIVER$$aarticle
000863067 3367_ $$2DataCite$$aOutput Types/Journal article
000863067 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568035810_22203
000863067 3367_ $$2BibTeX$$aARTICLE
000863067 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863067 3367_ $$00$$2EndNote$$aJournal Article
000863067 520__ $$aAmyloid-β peptide (Aβ) is an intrinsically disordered protein (IDP) associated with Alzheimer’s disease. The structural flexibility and aggregation propensity of Aβ pose major challenges for elucidating the interaction between Aβ monomers and ligands. All-D-peptides consisting solely of D-enantiomeric amino acid residues are interesting drug candidates that combine high binding specificity with high metabolic stability. Here we characterized the interaction between the 12-residue all-D-peptide D3 and Aβ42 monomers, and how the interaction influences Aβ42 aggregation. We demonstrate for the first time that D3 binds to Aβ42 monomers with submicromolar affinities. These two highly unstructured molecules are able to form complexes with 1:1 and other stoichiometries. Further, D3 at substoichiometric concentrations effectively slows down the β-sheet formation and Aβ42 fibrillation by modulating the nucleation process. The study provides new insights into the molecular mechanism of how D3 affects Aβ assemblies and contributes to our knowledge on the interaction between two IDPs.
000863067 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000863067 588__ $$aDataset connected to CrossRef
000863067 7001_ $$0P:(DE-Juel1)174397$$aLoschwitz, Jennifer$$b1$$ufzj
000863067 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$ufzj
000863067 7001_ $$0P:(DE-Juel1)162443$$aNagel-Steger, Luitgard$$b3$$ufzj
000863067 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b4$$eCorresponding author$$ufzj
000863067 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules24112129$$gVol. 24, no. 11, p. 2129 -$$n11$$p2129 -$$tMolecules$$v24$$x1420-3049$$y2019
000863067 8564_ $$uhttps://juser.fz-juelich.de/record/863067/files/Invoice_MDPI_molecules-511402_1202.61EUR.pdf
000863067 8564_ $$uhttps://juser.fz-juelich.de/record/863067/files/Invoice_MDPI_molecules-511402_1202.61EUR.pdf?subformat=pdfa$$xpdfa
000863067 8564_ $$uhttps://juser.fz-juelich.de/record/863067/files/molecules-24-02129.pdf$$yOpenAccess
000863067 8564_ $$uhttps://juser.fz-juelich.de/record/863067/files/molecules-24-02129.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863067 8767_ $$8molecules-511402$$92019-06-04$$d2019-06-05$$eAPC$$jZahlung erfolgt
000863067 909CO $$ooai:juser.fz-juelich.de:863067$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000863067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177882$$aForschungszentrum Jülich$$b0$$kFZJ
000863067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174397$$aForschungszentrum Jülich$$b1$$kFZJ
000863067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000863067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162443$$aForschungszentrum Jülich$$b3$$kFZJ
000863067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b4$$kFZJ
000863067 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000863067 9141_ $$y2019
000863067 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863067 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863067 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863067 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2017
000863067 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863067 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863067 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863067 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863067 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863067 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863067 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863067 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863067 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863067 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863067 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863067 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000863067 9801_ $$aAPC
000863067 9801_ $$aFullTexts
000863067 980__ $$ajournal
000863067 980__ $$aVDB
000863067 980__ $$aUNRESTRICTED
000863067 980__ $$aI:(DE-Juel1)ICS-6-20110106
000863067 980__ $$aAPC
000863067 981__ $$aI:(DE-Juel1)IBI-7-20200312