000863070 001__ 863070
000863070 005__ 20240711113815.0
000863070 0247_ $$2doi$$a10.1088/1361-6641/aabc6d
000863070 0247_ $$2ISSN$$a0268-1242
000863070 0247_ $$2ISSN$$a1361-6641
000863070 0247_ $$2WOS$$aWOS:000431061600001
000863070 037__ $$aFZJ-2019-03187
000863070 041__ $$aEnglish
000863070 082__ $$a620
000863070 1001_ $$0P:(DE-HGF)0$$aHaas, F.$$b0
000863070 245__ $$aQuantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts
000863070 260__ $$aBristol$$bIOP Publ.$$c2018
000863070 3367_ $$2DRIVER$$aarticle
000863070 3367_ $$2DataCite$$aOutput Types/Journal article
000863070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559900938_27796
000863070 3367_ $$2BibTeX$$aARTICLE
000863070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863070 3367_ $$00$$2EndNote$$aJournal Article
000863070 520__ $$aAn interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.
000863070 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000863070 588__ $$aDataset connected to CrossRef
000863070 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000863070 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000863070 7001_ $$0P:(DE-Juel1)165722$$aDickheuer, S.$$b1
000863070 7001_ $$0P:(DE-Juel1)145960$$aZellekens, P.$$b2
000863070 7001_ $$0P:(DE-HGF)0$$aRieger, T.$$b3
000863070 7001_ $$0P:(DE-Juel1)128603$$aLepsa, M. I.$$b4
000863070 7001_ $$0P:(DE-Juel1)128608$$aLüth, H.$$b5
000863070 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b6
000863070 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th$$b7$$eCorresponding author
000863070 773__ $$0PERI:(DE-600)1361285-2$$a10.1088/1361-6641/aabc6d$$gVol. 33, no. 6, p. 064001 -$$n6$$p064001 -$$tSemiconductor science and technology$$v33$$x1361-6641$$y2018
000863070 8564_ $$uhttps://juser.fz-juelich.de/record/863070/files/Haas_2018_Semicond._Sci._Technol._33_064001.pdf$$yRestricted
000863070 8564_ $$uhttps://juser.fz-juelich.de/record/863070/files/Haas_2018_Semicond._Sci._Technol._33_064001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863070 909CO $$ooai:juser.fz-juelich.de:863070$$pVDB
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165722$$aForschungszentrum Jülich$$b1$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b2$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b4$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b5$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000863070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b7$$kFZJ
000863070 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000863070 9141_ $$y2019
000863070 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863070 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863070 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMICOND SCI TECH : 2017
000863070 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863070 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863070 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863070 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863070 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863070 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863070 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863070 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863070 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863070 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863070 920__ $$lyes
000863070 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000863070 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000863070 980__ $$ajournal
000863070 980__ $$aVDB
000863070 980__ $$aI:(DE-Juel1)PGI-9-20110106
000863070 980__ $$aI:(DE-Juel1)IEK-4-20101013
000863070 980__ $$aUNRESTRICTED
000863070 981__ $$aI:(DE-Juel1)IFN-1-20101013