000863071 001__ 863071 000863071 005__ 20230111074228.0 000863071 0247_ $$2doi$$a10.1002/hbm.24429 000863071 0247_ $$2ISSN$$a1065-9471 000863071 0247_ $$2ISSN$$a1097-0193 000863071 0247_ $$2Handle$$a2128/28499 000863071 0247_ $$2altmetric$$aaltmetric:50397816 000863071 0247_ $$2pmid$$apmid:30367727 000863071 0247_ $$2WOS$$aWOS:000683897100005 000863071 037__ $$aFZJ-2019-03188 000863071 082__ $$a610 000863071 1001_ $$0P:(DE-Juel1)164396$$aRajkumar, Ravichandran$$b0 000863071 245__ $$aComparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data 000863071 260__ $$aNew York, NY$$bWiley-Liss$$c2021 000863071 3367_ $$2DRIVER$$aarticle 000863071 3367_ $$2DataCite$$aOutput Types/Journal article 000863071 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635149653_28703 000863071 3367_ $$2BibTeX$$aARTICLE 000863071 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000863071 3367_ $$00$$2EndNote$$aJournal Article 000863071 520__ $$aSimultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low-frequency fluctuations (fALFFs), as well as 2-[18F]fluoro-2-desoxy-d-glucose (FDG)-PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact-corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs-fMRI metrics and FDG-PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) and FDG-PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG-PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders. 000863071 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000863071 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1 000863071 588__ $$aDataset connected to CrossRef 000863071 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b1 000863071 7001_ $$0P:(DE-Juel1)144215$$aMauler, Jörg$$b2 000863071 7001_ $$0P:(DE-Juel1)165677$$aSripad, Praveen$$b3 000863071 7001_ $$0P:(DE-HGF)0$$aRégio Brambilla, Cláudia$$b4 000863071 7001_ $$0P:(DE-Juel1)131788$$aRota Kops, Elena$$b5 000863071 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b6$$ufzj 000863071 7001_ $$0P:(DE-Juel1)131757$$aDammers, Jürgen$$b7 000863071 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b8 000863071 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9 000863071 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b10$$ufzj 000863071 7001_ $$0P:(DE-HGF)0$$aBiswal, Bharat$$b11 000863071 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b12$$ufzj 000863071 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b13$$eCorresponding author$$ufzj 000863071 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24429$$n13$$p4122-4133$$tHuman brain mapping$$v42$$x1065-9471$$y- 000863071 8564_ $$uhttps://juser.fz-juelich.de/record/863071/files/2018_Rajkumar_HBM_Postprint.pdf$$yOpenAccess 000863071 8564_ $$uhttps://juser.fz-juelich.de/record/863071/files/Comparison_of%20EEG_microstates_PET_fMRI_Revision1.pdf$$yOpenAccess 000863071 8564_ $$uhttps://juser.fz-juelich.de/record/863071/files/hbm.24429.pdf$$yOpenAccess 000863071 8564_ $$uhttps://juser.fz-juelich.de/record/863071/files/2018_Rajkumar_HBM_Postprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000863071 909CO $$ooai:juser.fz-juelich.de:863071$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164396$$aForschungszentrum Jülich$$b0$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b1$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144215$$aForschungszentrum Jülich$$b2$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165677$$aForschungszentrum Jülich$$b3$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131788$$aForschungszentrum Jülich$$b5$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b6$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b7$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b8$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b10$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b12$$kFZJ 000863071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b13$$kFZJ 000863071 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000863071 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000863071 9141_ $$y2021 000863071 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000863071 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000863071 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000863071 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2017 000863071 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000863071 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000863071 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000863071 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000863071 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000863071 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000863071 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000863071 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000863071 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000863071 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000863071 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0 000863071 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000863071 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000863071 980__ $$ajournal 000863071 980__ $$aVDB 000863071 980__ $$aI:(DE-Juel1)INM-11-20170113 000863071 980__ $$aI:(DE-Juel1)INM-4-20090406 000863071 980__ $$aI:(DE-82)080010_20140620 000863071 980__ $$aUNRESTRICTED 000863071 9801_ $$aFullTexts