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In Brief 

A key element of several large-scale brain research projects such as 

the EU Human Brain Project is simulation of large networks of 

neurons. Here it is argued why such simulations are indispensable for 

bridging the neuron and system levels in the brain. 

 

Abstract 

A key element of the European Union’s Human Brain Project (HBP) 

and other large-scale brain research projects is simulation of large-

scale model networks of neurons. Here we argue why such 

simulations will likely be indispensable for bridging the scales between 

the neuron and system levels in the brain, and a set of brain 

simulators based on neuron models at different levels of biological 

detail should thus be developed. To allow for systematic refinement of 
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candidate network models by comparison with experiments, the 

simulations should be multimodal in the sense that they should not 

only predict action potentials, but also electric, magnetic, and optical 

signals measured at the population and system levels. 
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1           Introduction 
Despite decades of intense research efforts investigating the brain at the molecular, cell, 

circuit and system levels, the operating principles of the human brain, or any brain, remain largely 
unknown. Likewise, effective treatments for prevalent serious psychiatric disorders and dementia 
are still lacking (Hyman, 2012; Masters et al., 2015). In broad terms one could argue that we now 
have a fairly good understanding of how individual neurons operate and process information, but 
that the behavior of networks of such neurons is poorly understood. Following the pioneering work 
of Hubel and Wiesel mapping out receptive fields in the early visual system (Hubel and Wiesel, 
1959), similar approaches have been used to explore how different types of sensory input and 
behaviour are represented in the brain. In these projects the statistical correlation between 
recorded neural activity, typically action potentials from single neurons, and sensory stimulation or 
behaviour of the animal is computed. From this, so-called descriptive mathematical models have 
been derived, accounting for, say, how the firing rate of a neuron in the visual system depends on 
the visual stimulus, see e.g., Dayan and Abbott (2001, Ch. 2). 

The qualitative insights gained by obtaining these descriptive receptive-field models should 

not be underestimated, but these models offer little insight into how networks of neurons give rise 

to the observed neural representations. Such insight will require mechanistic modeling where 

neurons are explicitly modeled and connected in networks. Starting with the seminal work of 

Hodgkin and Huxley who developed a mechanistic model for action-potential generation and 

propagation in squid giant axons (Hodgkin and Huxley, 1952), biophysics-based modeling of neurons 

is now well established (Koch, 1999; Dayan and Abbott, 2001; Sterratt et al., 2011). Numerous 

mechanistic neuron models tailored to model specific neuron types have been constructed, for 

example, for cells in mammalian sensory cortex (Hay et al., 2011; Markram et al., 2015; Pozzorini et 

al., 2015), hippocampus (Migliore et al., 1995) and thalamus (McCormick and Huguenard, 1992; 

Halnes et al., 2011). 

At the level of networks, most mechanistic studies have focused on generic properties and 

have considered stylized models with a single or a handful of neuronal populations consisting of 

identical neurons with statistically identical connection properties. Such studies have given 

invaluable qualitative insights into the wide range of possible network dynamics (see Brunel (2000) 

for an excellent example), but real brain networks have heterogeneous neural populations and 

more structured synaptic connections. For small networks, excellent models aiming to mimic real 

neural networks have been developed, a prominent example being the circuit in the crustacean 

stomatogastric nervous system comprising a few tens of neurons (Marder and Goaillard, 2006). 

However, even though pioneering efforts to construct comprehensive networks with tens of 

thousands of neurons mimicking cortical columns in mammalian sensory cortices, have been 



pursued, e.g., Traub et al. (2005); Potjans and Diesmann (2014); Markram et al. (2015); Schmidt et 

al. (2018a); Arkhipov et al. (2018), mechanistic modelling of biological neural networks mimicking 

specific brains, or brain areas, is still in its infancy.  

A cubic millimetre of cortex contains several tens of thousands of neurons, and until 

recently, limitations in computer technology have prohibited the mathematical exploration of 

neural networks mimicking cortical areas even in the smallest mammals. With the advent of modern 

supercomputers, simulations of networks comprising hundreds of thousands or millions of neurons 

are becoming feasible. Thus several large-scale brain projects, including the EU Human Brain Project 

(HBP) and MindScope at the Allen Brain Institute, have endeavoured to create large-scale network 

models for mathematical exploration of network dynamics (Kandel et al., 2013). In the HBP, where 

all authors of this paper participate, the goal is not so much to create models for specific brain 

areas, but rather to create general-purpose brain simulators. These brain simulators, which also 

aptly are called brain-simulation engines, will not be tied to specific candidate models but rather be 

applicable for execution of many candidate models, both current and future candidates. As such 

their use by the scientific community for mathematical exploration of brain function is expected to 

go well beyond the planned end of the HBP project in 2023. 

In this article, we present the scientific case for brain simulations, in particular the 

development and use of multi-purpose brain simulators, and argue why such simulators will be 

indispensable in future neuroscience. Furthermore, the long-term maintenance and continued 

development of such simulators are not feasible for individual researchers, nor individual research 

groups. Rather, community efforts as exemplified by the brain-simulator developments in HBP are 

required. 
 

 

2 Brain simulations 

Brain function relies on activity on many spatial scales, from the nanometer scale of atoms 

and molecules to the meter scale of whole organisms, see, e.g., Devor et al. (2013). And unlike, for 

example, in a canister of gas, these scales are intimately connected. While the replacement of a 

single gas molecule with another has no effect on the overall behaviour of the gas, a change in a 

DNA molecule can change the brain dramatically, like in Huntington’s disease (Gusella et al., 1983). 

Mechanistic models can act as `bridges between different levels of understanding’ (Dayan and 

Abbott, 2001, Preface) as for example in the Hodgkin-Huxley model where axonal action-potential 

propagation is explained in terms of the properties of ion channels, that is, molecules (proteins) 

embedded in the cell membrane. Today’s most impressive multiscale simulations are arguably the 

weather simulations that provide, with increased accuracy year by year, our weather forecasts 

(Bauer et al., 2015). These physics- and chemistry-based simulations bridge scales from tens of 

meters to tens of thousands of kilometers, the size of our planet, and are in computational 

complexity comparable to whole-brain simulations (Koch and Buice, 2015). 

 

2.1 Brain network simulations 
Large-scale brain-simulation projects have until now predominantly focused on linking the 

neuron level to the network level, that is, simulating synaptically connected networks of hundreds, 

thousands or more neurons. One obvious reason is that at present such networks, whose properties 

presumably lie at the heart of our cognitive abilities, are particularly difficult to understand with 

qualitative reasoning alone, that is, without the aid of mathematics. Another reason is that starting 

with the seminal works of Hodgkin and Huxley (1952) and Rall (Segev et al., 1994), we now have a 

biophysically well-founded scheme for simulating how individual neurons process information, that 

is, how they integrate synaptic inputs from other neurons and generate action potentials. This 



scheme is covered in all textbooks in computational neuroscience (see, e.g., Koch (1999); Dayan and 

Abbott (2001); Sterratt et al. (2011)) and typically also in computational neuroscience courses given 

at universities. Numerous neuron models are now available for reuse and further development and 

can be downloaded from databases such as ModelDB (senselab.med.yale.edu/modeldb/), the 

Neocortical Microcircuit Collaboration (NMC) Portal (bbp.epfl.ch/nmc-portal), the Brain Observatory 

at the Allen Brain Institute (observatory.brain-map.org), and Open Source Brain 

(opensourcebrain.org). Mathematical models for synaptic function, including synaptic plasticity, 

have also been developed, and all the necessary building blocks for creating models for networks of 

neurons are thus available. 

Some large-scale network models have been based on morphologically detailed neuron 

models (Reimann et al., 2013; Markram et al., 2015; Arkhipov et al., 2018), some have used stylized 

spatially-extended neuron models (Traub et al., 2005; Tomsett et al., 2015; Migliore et al., 2015), 

some have used point neurons of the integrate-and-fire type (Lumer et al., 1997; Izhikevich and 

Edelman, 2008; Potjans and Diesmann, 2014; Hagen et al., 2016; van Albada et al., 2018; Schmidt et 

al., 2018a,b), and some have used firing-rate units representing population activity (Schirner et al., 

2018). More biological detail does not by itself mean that the model is more realistic. In fact, point 

neurons, that is, neuron models where the membrane potential is assumed to be the same across 

dendrites and soma, have been found to be excellently suited to reproduce experimentally recorded 

action potentials following current stimulation (Jolivet et al., 2008; Pozzorini et al., 2015). The 

various neuron models have different pros and cons, and the choice of which to use depends on the 

question asked (Herz et al., 2006). We thus argue that a set of brain simulators for simulation of 

models at different levels of biological detail should be developed. 

For weather simulations the goal is clear, that is, to accurately predict temperature, 

precipitation and wind at different geographical locations. Likewise, brain simulations should predict 

what can be experimentally measured, not only action potentials, but also population-level 

measures such as local field potentials (LFP), electrocorticographic signals (ECoG) and voltage-

sensitive dye imaging (VSDI) signals, as well as systems-level measurements such as signals recorded 

by electroencephalography (EEG) or magnetoencephalography (MEG) (Brette and Destexhe, 2012), 

cf. Figure 1. For these electrical, magnetic and optical measures the `measurement physics’ seems 

well established, that is, mathematical models for the biophysical link between electrical activity in 

neurons and what is measured by such recordings have been developed, see references in caption 

of Figure 1. Simulation tools such as LFPy (lfpy.github.io) and BIONET 

(alleninstitute.github.io/bmtk/bionet.html) for prediction of such electrical and magnetic signals 

from simulated network activity, both using biophysically-detailed multicompartment models 

(Lindén et al., 2014; Gratiy et al., 2018; Hagen et al., 2018) and point-neuron models of the 

integrate-and-fire type (Hagen et al., 2016), are now publically available. For functional magnetic 

resonance imaging (fMRI) the biophysical link between activity in individual neurons and the 

recorded BOLD signal is not yet established (but see Uhlirova et al. (2016b,a)), and a mechanistic 

forward-modeling procedure linking microscopic brain activity to the measurements is not yet 

available. 
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Figure 1: Electric and magnetic signals to be computed in brain network simulations. 
Measures of neural activity in cortical populations: (i) spikes (action potentials) and 
LFP from a linear microelectrode inserted into cortical grey matter, (ii) ECoG from 
electrodes positioned on the cortical surface, (iii) EEG from electrodes positioned on 
the scalp, and (iv) MEG measuring magnetic fields stemming from brain activity by 
means of SQUIDs placed outside the head. For reviews on the biophysical origin and 
link between neural activity and the signals recorded in the various measurements, see 
Hämäläinen et al. (1993); Nunez and Srinivasan (2006); Brette and Destexhe (2012); 
Buzsaki et al. (2012); Einevoll et al. (2013); Pesaran et al. (2018); Hagen et al. (2018). 

  

Figure 2 illustrates the use of brain network simulators for a so-called barrel column in 

somatosensory cortex. Each such column primarily processes sensory information from a single 

whisker on the snouts of rodents, and in rats a barrel column contains some tens of thousands of 

neurons. A column can be modeled as a network of interconnected neurons based on biophysically-

detailed multicompartment models (here referred to as level I), point-neuron models of the 

integrate-and-fire type (level II), or firing-rate units where each unit represents activity in a neuronal 

population (level III). Regardless of the underlying neuron type, the simulator should preferably be 

multimodal, that is, simultaneously predict many types of experimental signals stemming from the 

same underlying network activity. Ideally the neuron models at the different levels of detail should 

be interconnected in the sense that the simpler neuron models should be possible to reduce from 

(or at least be compatible with) the more detailed neuron models. The field of statistical physics 

addresses such scale bridging. A prime example of its application is the development of the 

thermodynamic ideal-gas law describing the macroscopic properties of gases in terms of variables 

like temperature or pressure from the microscopic Newtonian dynamics of the individual gas 

molecules. As a neuroscience example, several projects have aimed to derive firing-rate models 

(level III) from spiking neuron models (level II), see, e.g., de Kamps et al. (2008); Deco et al. (2008); 

Ostojic and Brunel (2011); Bos et al. (2016); Schwalger et al. (2017); Heiberg et al. (2018). 

 
 
 
 



 
Figure 2: Illustration of multimodal modeling with brain simulators. Network 
dynamics in a cortical column (barrel) processing whisker stimulation in rat 
somatosensory cortex (left) can be modelled with units at different levels of detail. In 
the present example we have a level organization with biophysically detailed neuron 
models (level I), simplified point-neuron models (level II), and firing-rate models with 
neuron populations as fundamental units (level III). Regardless of level, the network 
simulators should aim to predict the contribution of the network activity to all 
available measurement modalities. In addition to the electric and magnetic 
measurement modalities illustrated in Figure 1, the models may also predict optical 
signals, for example, signals from voltage-sensitive dye imaging (VSDI) signals and 
two-photon calcium imaging (Ca im.). 

 

2.2 One simulator - many models  

When discussing simulations, it is important to distinguish between the model and the simulator. 

Here 

• model refers to the equations with all parameters specified, 

• simulator refers to the software tool that can execute the model (like NEURON, NEST, and 

The Virtual Brain used in HBP), and 

• simulation refers to the execution of a model in a simulator. 

In some fields of science, simulators are intimately tied to solving a particular model. One 

example is atomic physics where there is consensus both about what equation to solve (the 

Schrödinger equation) and the numerical values of the few parameters involved (electron mass, 

Planck’s constant, ...). In contrast, for simulations of brain networks we can and should have a clear 

separation. The simulators used in HBP are accordingly designed to execute many different models, 

just like calculus can be used in many different physics calculations. Also, if possible, one should as a 

control execute the same model on different simulators to check for consistency of the results, see, 

e.g., van Albada et al. (2018); Shimoura et al. (2018). To facilitate this, software packages for 

simulator-independent specification of neuronal network models are developed (Davison et al., 

2008). 

3 Network simulators not tailored to specific brain-function hypotheses 
In experimental neuroscience the method is often intimately tied to the hypothesis being tested. In 

electrophysiological experiments, for example, the experimental set-up and execution protocols are 

tailored to most efficiently answer the biological question asked. In contrast, brain network 



simulators should not be designed to test a particular hypothesis about brain function, rather they 

should be designed so that they can test many existing and future hypotheses. 

3.1 Discovery of Newton’s law of gravitation - an analogy 
As the tools for testing a hypothesis can easily be confused with the hypothesis itself, we here 

present an analogy from physics, Isaac Newton’s discovery of the law of gravitation. While one 

could argue that the establishment of a mechanistic understanding of brain function, that is, 

understanding our cognitive abilities on the basis of neuronal action, would be a breakthrough of 

similar magnitude as discovering this law, this is not the point here. Here this example is only used 

to illustrate the role of network simulators in brain research. 

 Prior to Newton’s theory, the planetary orbits had since ancient times been described by 

the Ptolemaic model. This model assumed the Earth to be at center of the universe and the planets 

to move in trajectories described by a complicated arrangement of circles within circles (so-called 

epicycles). The model predicted the planetary orbits accurately and was used for more than 1500 

years to make astronomical charts for navigation. It was thus a successful descriptive model, but it 

shed little light on the underlying physical mechanisms governing the planetary movement. As such 

it had a similarly useful role as the present descriptive, receptive-field-like models accounting for 

neural representations in the brain.  

Newton’s theory of gravitation provided a mechanistic understanding of planetary 

movement based on his two hypotheses on (i) how masses attract each other and (ii) how the 

movement of masses is changed when forces are acting on them. But the theory went beyond 

planetary orbits in that it, for example, also successfully predicted known kinematic laws of falling 

apples, trajectories of cannon balls, and high and low tides due to gravitational attraction between 

the Moon and the water in our oceans.  

The first hypothesis of Newton was that two masses 𝑚 and 𝑀 with a separation distance 𝑟 

attract each other with a force 𝐹𝑔 given by 

 

𝐹𝑔 = 𝐺
𝑚𝑀

𝑟2   ,                                                              (1) 

 

where 𝐺 is the gravitational constant. The second hypothesis was that when a force 𝐹, in this case 

𝐹𝑔 in Eq. (1), is acting on a mass 𝑚, the mass will be accelerated with an acceleration 𝑎 according to 

 

𝑎 =
𝐹𝑔

𝑚
.                                                                   (2) 

 

To test the validity of these hypotheses, Newton had to compare with experiments, that is, available 

measurements of planetary orbits. However, the connection between the mathematically 

formulated hypotheses in Eqs. (1-2) and shapes of predicted planetary orbits is not obvious. In fact, 

Newton developed a new type of mathematics, calculus, to make testable predictions from his 

theory to allow for its validation (Leibniz independently developed calculus around the same time). 

Without the appropriate mathematics it would have been impossible for Newton to test whether 

nature behave according to his hypotheses.  

Comparison with experiments demonstrated that Newtons’s hypotheses were correct, and 

Newton’s theory of gravitation is now one of the pillars of physics. However, if it had turned out 

that the predictions of planetary orbits were not in accordance with the observational data, he 

could have tried other hypotheses, that is, other mathematically-formulated hypotheses than those 

in Eqs. (1-2). Then, with the aid of his newly invented calculus, he could have made new planetary 

orbit predictions and check whether these were in better agreement with measurements.  



The point is that calculus was a tool to test Newton’s hypotheses about the movement of 

masses, it was not a part of the hypotheses themselves. Likewise, we argue that brain network 

simulators should, in analogy to calculus, be designed to be tools for making precise predictions for 

brain measurements for any candidate hypothesis for how brain networks are designed and 

operate. 

3.2 Hypothesis underlying brain network simulators 
At present we do not have any well-grounded, and certainly not generally accepted, theory 

about how networks of millions or billions of neurons work together to provide the salient brain 

functions in animals or humans. We do not even have a well-established model for how neurons in 

primary visual cortex of mammals work together to form the intriguing neuronal representations 

with, for example, orientation selectivity and direction selectivity that were discovered by Hubel 

and Wiesel sixty years ago (Hubel and Wiesel, 1959). Moreover, we do not have an overview over all 

neuron types in the brain. However, we do know the biophysical principles for how to model 

electrical activity in neurons and how neurons integrate synaptic inputs from other neurons and 

generate action potentials. These principles, which go back to the work of Hodgkin and Huxley 

(1952) and Rall (Segev et al., 1994) and are described in numerous textbooks (see, e.g., Koch (1999); 

Dayan and Abbott (2001); Sterratt et al. (2011)), are the only hypotheses underlying the 

construction of brain network simulators. This is the reason why many models can be represented 

in the same simulator and why it is possible to develop generally applicable simulators for network 

neuroscience. 

However, while we know the principles for how to model neuronal activity, we do not a 

priori know all the ingredients needed to fully specify network models. In order to construct 

candidate network models, information on the anatomical structure, electrophysiological 

properties, and spatial positions of neurons, as well as information on how these neurons are 

connected, are needed. The MindScope project at the Allen Brain Institute as well as the HBP are 

gathering such data, and the first large-scale models are constructed on the basis of these and other 

sources (Arkhipov et al., 2018). Although the primary goal in the HBP is to create general-purpose 

brain simulators, such initial models are needed to guide the construction of these simulators and 

to demonstrate their performance and potential usefulness. However, given the present lack of 

data on, for example, the strength and plasticity of synaptic connections between the neurons, it is 

clear that these initial models can be nothing more than plausible skeleton models to be used as 

starting points for further explorations. Experimental data is thus collected to have a starting point 

for mathematical exploration, not in the belief that brain function will be understood just by 

collecting these data and ‘putting them into a large simulator’.  

Each candidate network model with specified neuron models, network structure and 

synaptic connections precisely defined by a set of model parameters, can be thought of as a 

candidate hypothesis. Brain network simulators should be designed to allow for the computation of 

predictions of relevant experimental measures from any such candidate model (see Figure 2) so that 

the merit of each model can be assessed by comparison with experiments.  

In passing, we note that the use of mathematical simulators has a proud history in 

neuroscience: The accurate model prediction of the speed and shape of propagating action 

potentials in the squid giant axon by Hodgkin and Huxley in the early 1950s required the numerical 

solution of the equations on a hand-operated calculation machine, since the newly installed 

Cambridge computer was down for six months in 1951 (Hodgkin, 1976). 



4 Use of brain network simulators 
4.1 Biological imitation game 

When the physicist Richard Feynman died in 1988, a statement on his blackboard read: 

‘What I cannot create, I do not understand.’ In the present context an interpretation of this is that 

unless we can create mechanistic mathematical models mimicking the behaviour in real brains, our 

understanding will have to remain limited. An obvious use of brain network simulators is to 

contribute towards building such models. In particular, the simulators should test candidate 

network models against experiments so that over time network models improve and get closer to 

the networks that are realized in real biological systems. This would amount to identifying the 

models that perform best in the ‘biological imitation game’ (Koch and Buice, 2015), that is, the 

models whose predictions best mimic experimental recordings of the same system.  

In general a unique winner of such an imitation game will not be found, that is, a specific 

network model with a specific set of model parameters. Rather, classes of candidate models with 

similar structures and model parameters will likely do equally well, but as more experiments 

become available the class of models jointly leading this game will expectedly be reduced in size. At 

all times the leading models can be considered as the currently most promising hypotheses for how 

the specific biological network is designed and operates, to be challenged by new experiments and 

new candidate models. 

For Newton it was clear what should be compared: the observed planetary orbits and the 

corresponding orbits predicted by his theory. In brain science this is less clear. Action potentials are 

clearly the key carrier of information, but what aspects of the trains of action potentials should be 

mimicked by brain simulations? Detailed temporal sequence of actions potentials from individual 

neurons, coefficients of variation, or firing rates of individual neurons (Jolivet et al., 2008; Gutzen et 

al., 2018)? Or maybe the target only should be the average firing rates of populations of neurons? 

Likewise, it is unclear what aspects of the LFP or VSDI signals should be compared, the full temporal 

signals or maybe the power spectral densities? The question of what criteria should be used to 

select the `best’ model cannot be fully settled at present. The answer will also depend, for example, 

on whether one believes information is coded in firing rates or in the detailed temporal structure of 

action-potential trains. And maybe realistic behaviour of a robot following motor commands 

produced by a model network could be one success criterium when such models become available? 

However, such uncertainties regarding modeling targets should not preclude the initiation of a 

‘biological imitation game’, they only mean that different rules of the game may be considered or 

that the rules might change over time. 

Overarching ideas on how computations are performed by the brain can also inspire 

candidate models. For example, predictive coding (Rao and Ballard, 1999) has emerged as a 

contender to the more traditional idea that the brain integrates information from the outside world 

from feature detectors through predominantly feedforward processes. Instead, predictive coding 

suggests that the brain is constantly updating hypotheses about the world and predicting sensory 

information by feedback mechanisms. These two competing ideas could, when instantiated as 

specific network models, make different predictions about neurophysiological experiments. 

4.2 Validation of data-analysis methods 
Another important application of brain simulations is to create benchmarking data for 

validation of methods used to analyse experimental data. This approach has already been used to 

generate benchmarking data for testing of automatic spike-sorting algorithms (Hagen et al., 2015), 

methods for detecting putative synfire chains (Schrader et al., 2008), as well as for testing of 

methods used to estimate current-source densities (CSDs) from recorded LFPs (Pettersen et al., 

2008). Several statistical methods have been developed for estimating, for example, functional 



connectivities between neural populations and cortical areas based on population-level and 

systems-level measures such as LFP, EEG, MEG and fMRI signals (Einevoll et al., 2013; Pesaran et al., 

2018). These statistical analysis methods should be validated on `virtual’ benchmarking data 

computed by brain network simulators where the ground-truth neuron and network activity are 

known (Denker et al., 2012). Even if these model-based benchmarking data do not correspond in 

detail to any specific biological system, data-analysis methods claimed to be generally applicable 

should also perform well on these simulated data. 

4.3 Use by wider research community 
Anyone who has tried, knows that learning the calculus needed to derive planetary orbits 

from Newton’s hypotheses is demanding, and for most a formal training in mathematics is required. 

Likewise, the development of brain simulators requires extensive training in mathematics, computer 

science and physics, as well as a significant coordinated work effort involving many developers. 

Fortunately, just like a practicing neuroscientist does not need to construct, say, a confocal 

microscope in order to use it in research, simulators can be used without knowing all the technical 

inner workings. Some simulators like NEURON (Carnevale and Hines, 2006) even come with a 

graphical user interface, and plug-and-play programs where neural networks can be created and 

simulated by pulling elements with the finger onto a canvas, have also been made (Dragly et al., 

2017). 

While the complexity of many neural network models will make the use of solely graphical 

user interfaces difficult, it should nevertheless be a goal to design brain simulators so that they also 

can be used by the general neuroscience community. One aspect of this is that the developers of 

widely used simulators should regularly offer tutorial and training courses, for example, in 

connection with major neuroscience conferences. Further, high-quality user-level documentation 

and support systems for personal inquiries by users must be set up. However, even the best user-

level documentation will not enable the general neuroscience community to easily set up large-

scale network models. Extracting all necessary neurobiological data from experiments, literature 

and databases and specifying reliable executable model descriptions, generally require many years 

of effort as exemplified by recent studies, e.g., Potjans and Diesmann (2014); Markram et al. (2015); 

Schmidt et al. (2018a); Arkhipov et al. (2018). It is thus essential that executable descriptions of such 

models are made publicly available as examples and starting points for the community. 

Note that the publishing of executable model descriptions may require procedures and 

tools that go beyond standard scientific publishing practices. For example, the recent publication of 

a comprehensive multi-area model of macaque visual cortex (Schmidt et al., 2018a,b) was 

accompanied by detailed model descriptions expressed by technologies like GitHub (https://inm-

6.github.io/multi-area-model/) and Snakemake (Köster and Rahmann, 2012) and accompanied by 

an introductory video (https://youtu.be/YsH3BcyZBcU). Further, the authors also provided the 

digitized workflow leading from the underlying experimental data to the model specification. 

With a plausible candidate network model for, say, a part of V1 in a mouse as a starting 

point, scientists with modest training in mathematics, physics, and computer science should be able 

to use brain simulations to ask questions like: 

• What is the predicted spiking response of various neuron types to different types of visual 

stimuli? 

• What is the predicted effect on network activity with pharmacological blocking of a 

particular ion channel in a particular neuron type? 

• What does the visually-evoked LFP signal recorded inside the cortex look like, and what 

neuron populations are predicted to contribute most to this signal? 

https://inm-6.github.io/multi-area-model/
https://inm-6.github.io/multi-area-model/
https://youtu.be/YsH3BcyZBcU


• Can the EEG signal recorded by electrodes on the scalp positioned outside the visual cortex 

distinguish between two candidate network models for V1? 

The application of brain simulators can be computationally demanding and require use of 

supercomputers, especially if many model parameter combinations are to be investigated. Not 

everyone has access to such supercomputers, nor the experience to install or maintain large 

computer programs. One option would then be to make brain network simulators available through 

web-based services so that all computations are done remotely on centralized supercomputer 

centers, as is the plan for HBP. 

In the long run, network neuroscience can only approach a mechanistic systems-level 

understanding if we overcome the complexity barrier by learning how to build on the work of 

others, that is, by eventually combining models of smaller brain networks components to larger 

structures of more relevance for cognition. Newton said that he had seen further than others 

because he was “standing on the shoulders of giants”. Likewise, we here argue that we need to find 

a way to “standing on the shoulders of each other’s mathematical models” to have a hope for a 

detailed understanding of the functioning of brain networks. 

5 Discussion and outlook 
We have here presented arguments for why brain network simulators are not only useful, but likely 

also critical for advancing systems neuroscience. By drawing the analogy to Newton’s discovery of 

the law of gravity, we have argued that brain simulators should not be made to test specific 

hypotheses about brain function. Rather, like Newton’s development of calculus to allow for testing 

of the validity of his physical hypotheses regarding planetary movement (Eqs. 1-2), brain simulators 

should be viewed as `mathematical observatories’ to test various candidate hypotheses. A brain 

simulator is thus a tool, not a hypothesis, and can as such be likened to tools used to image brain 

structure or brain activity. 

In computational neuroscience one has to ‘learn to compute without knowing all the 

numbers’ (as quoted from talk by John Hopfield at conference in Sigtuna, Sweden some twenty 

years ago). What is meant by this is that unlike in, say, quantum-mechanical computations of atomic 

properties where the handful of model parameters are known to many digits, the model 

parameters specifying brain networks are numerous, uncertain and may also change over time. The 

effects of uncertain model parameters and the uncertainty of model predictions can be 

systematically studied, though such uncertainty quantification requires repeated evaluations of the 

model of interest and is typically computationally demanding (Tennøe et al., 2018). 

We need a set of different brain network simulators describing the neurons at different 

levels of resolution, that is, different levels of biological detail as exemplified by the three levels 

depicted in Figure 2. Simulators based on biophysically detailed, multicompartmental neuron 

models (level I) can explore in detail how the dendritic structures affect integration of synaptic 

inputs and consequently the network dynamics (Reimann et al., 2013; Markram et al., 2015; 

Migliore et al., 2015; Arkhipov et al., 2018). Simulators based on point neurons of the integrate-and-

fire type (level II) are much less computationally demanding so that larger networks can be studied 

(Potjans and Diesmann, 2014). Further, the number of model parameters is much smaller and the 

fitting of single-neuron models to experimental recordings easier (Pozzorini et al., 2015). Population 

firing-rate models (level III) model the dynamics of entire populations which makes the models 

computationally, and often also conceptually, much easier (de Kamps et al., 2008; Cain et al., 2016; 

Schwalger et al., 2017). With population firing-rate models describing a small patch of cortex, so-

called neural-mass models, one can derive spatially extended models, so-called neural-field models, 

covering cortical areas and even complete human cortices (Deco et al., 2008; Ritter et al., 2013; 

Sanz Leon et al., 2013; Breakspear, 2017; Schirner et al., 2018). While at present most neural-field 



models are based on largely phenomenological neural-mass models (Jansen and Rit, 1995; Deco et 

al., 2008), the future goal should be to derive such neural-mass building blocks from population 

network models based on individual neurons (Zerlaut et al., 2018), or from fitting to experiments 

(Blomquist et al., 2009). 

Brain network simulation is still in its infancy, and the simulators and the associated 

infrastructure should be developed to allow for the study of larger networks and fully exploit the 

capabilities of modern computer hardware (see, e.g., Akar et al. (2019) and Kumbhar et al (2019)). 

They should also allow for the study of longer time-scale processes such as homeostatic and 

synaptic plasticity (Turrigiano and Nelson, 2004; Keck et al., 2017). With plausible biophysics-based 

rules for, for example, spike-timing-dependent long-term synaptic plasticity included in the models, 

studies of learning will also be possible. Brain simulators should eventually also be extended to go 

beyond the modeling of networks of neurons alone to also incorporate extracellular space and 

interaction with glia cells (Solbrå et al., 2018). Likewise, they should allow for studies of effects of 

electrical or magnetic stimulation of the brain, either with intracranial electrodes like in deep-brain 

stimulation (Perlmutter and Mink, 2006), with surface electrodes (Bosking et al., 2017), or 

transcranially (Wassermann et al., 2008). 

The present paper has focused on brain simulators for studying networks of neurons. While 

not addressed here, there is clearly also a need for simulators for studying brain activity at the 

subcellular scale, both for modelling molecular signaling pathways governed by reaction-diffusion 

dynamics (Bhalla and Wils, 2010) and for modeling molecular dynamics by Newtonian mechanics 

(Rapaport, 2004). We have also focused on the bottom-up-type network models typically pursued in 

the computational neuroscience community where model predictions can be compared directly 

with physiological experiments. However, network models can also be very useful for concisely and 

precisely representing ideas on how the brain may implement cognitive processes. An early 

example of such work is the so-called Hopfield model describing how associative memory can be 

achieved in recurrent networks of binary neurons (Hopfield, 1982). Over the last decades such 

modeling work has, for example, grown to include visual attention (Reynolds and Desimone, 1999; 

Deco and Rolls, 2004), language representation (van der Velde and de Kamps, 2006), decision 

making (Gold and Shadlen, 2007), and learning (Brader et al., 2007). While none of these works 

immediately predict specific detailed outcomes of neurophysiological experiments, they state ideas 

about cognitive phenomenon in a concise manner that allows scrutiny and critique.  

The development of high-quality brain simulators requires long-term commitment of 

resources. Both NEURON and NEST, two key brain simulators in the Human Brain Project, have been 

developed over a time period of more than 25 years. Likewise, the continued development, 

maintenance and user support of key brain simulators used by the research community will require 

long-term funding. These simulation tools can be likened to other joint research infrastructures such 

as astronomical observatories or joint international facilities for studies of subatomic particles. 

While the expenses for the operation of brain simulators will be much smaller than these 

experimental facilities, they should nevertheless be considered as necessary research infrastructure 

and preferably be funded as such.  

Until we learn how the wide range of spatial and temporal scales involved in brain function 

are connected, our understanding of our brains will be limited. Bridging these scales with 

mathematical modeling will be a daunting challenge, but encouragingly there are examples from 

other branches of science where many scales have been bridged, the most visible likely being 

numerical weather prediction (Bauer et al., 2015). Another impressive example of scale bridging is 

the engineering underlying smart phones. Here tailored materials made of selected semiconductor 

and metal atoms are assembled into numerous transistors (in some sense analogous to neurons) 

connected in networks on a chip (`brain’), which together with other components make up the 



smart phone (`organism’). These examples have been totally dependent on mathematics and 

simulations to bridge models at different scales. So a natural question is: Do we have a chance of 

ever understanding brain function without brain simulations? 
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