000863090 001__ 863090
000863090 005__ 20240708132740.0
000863090 0247_ $$2doi$$a10.1016/j.scriptamat.2019.05.030
000863090 0247_ $$2ISSN$$a1359-6462
000863090 0247_ $$2ISSN$$a1872-8456
000863090 0247_ $$2altmetric$$aaltmetric:61643775
000863090 0247_ $$2WOS$$aWOS:000475994700018
000863090 037__ $$aFZJ-2019-03204
000863090 082__ $$a670
000863090 1001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b0$$eCorresponding author
000863090 245__ $$aOn the role of Debye temperature in the onset of flash in three oxides
000863090 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000863090 3367_ $$2DRIVER$$aarticle
000863090 3367_ $$2DataCite$$aOutput Types/Journal article
000863090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575445806_12992
000863090 3367_ $$2BibTeX$$aARTICLE
000863090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863090 3367_ $$00$$2EndNote$$aJournal Article
000863090 520__ $$aHigher electric fields lower the temperature for the onset of flash. We explore the question “what can be the lowest temperature for initiating flash?”. Constant heating rate experiments at increasing electric fields reveal a surprising characteristic: the Debye temperature emerges as a the lower bound for the onset of flash. Data for flash temperature for three oxides are shown to exhibit this behavior in a universal plot.
000863090 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000863090 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
000863090 588__ $$aDataset connected to CrossRef
000863090 7001_ $$0P:(DE-HGF)0$$aAvila, Viviana$$b1
000863090 7001_ $$0P:(DE-HGF)0$$aNeto, Rubens Roberto Ingraci$$b2
000863090 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3
000863090 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000863090 7001_ $$0P:(DE-HGF)0$$aRaj, Rishi$$b5
000863090 773__ $$0PERI:(DE-600)2015843-9$$a10.1016/j.scriptamat.2019.05.030$$gVol. 170, p. 81 - 84$$p81 - 84$$tScripta materialia$$v170$$x1359-6462$$y2019
000863090 909CO $$ooai:juser.fz-juelich.de:863090$$pVDB
000863090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b0$$kFZJ
000863090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000863090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000863090 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000863090 9141_ $$y2019
000863090 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCRIPTA MATER : 2017
000863090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863090 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863090 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863090 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863090 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863090 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863090 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863090 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863090 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863090 980__ $$ajournal
000863090 980__ $$aVDB
000863090 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863090 980__ $$aUNRESTRICTED
000863090 981__ $$aI:(DE-Juel1)IMD-2-20101013