001     863091
005     20240708133839.0
037 _ _ |a FZJ-2019-03205
041 _ _ |a English
088 1 _ |a NTRD-MRWFD-2019- M3FT-19IN030102018
088 _ _ |a NTRD-MRWFD-2019- M3FT-19IN030102018
|2 Other
100 1 _ |a Horne, Gregory P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Radiolysis of Hydrophilic Diglycolamides in Aqueous Nitrate Solution
260 _ _ |c 2019
300 _ _ |a 21 p.
336 7 _ |a report
|2 DRIVER
336 7 _ |a REPORT
|2 ORCID
336 7 _ |a Report
|0 10
|2 EndNote
336 7 _ |a Output Types/Report
|2 DataCite
336 7 _ |a Report
|0 PUB:(DE-HGF)29
|2 PUB:(DE-HGF)
|m report
336 7 _ |a TECHREPORT
|2 BibTeX
336 7 _ |a Internal Report
|b intrep
|m intrep
|0 PUB:(DE-HGF)15
|s 1561623008_25820
|2 PUB:(DE-HGF)
502 _ _ |c Idaho National Laboratory, Center for Radiation Chemistry Research, Idaho Falls, ID, USA
520 _ _ |a The radiation chemistry of a series of hydrophilic DGAs (TEDGA, Me-TEDGA, Me2-TEDGA, and TPDGA) has been investigated under neutral pH, concentrated (5.0 M), aqueous nitrate solution conditions. A combination of steady-state gamma and time-resolved pulsed electron irradiation experiments, supported by advanced analytical techniques and multi-scale modeling calculations, have demonstrated that: (i) the investigated hydrophilic DGAs undergo first-order decay with an average dose constant of (3.48 ± 0.28) × 10–6 Gy–1; (ii) their degradation product distributions are similar to those under pure water conditions, except for the appearance of NOx adducts; and (iii) radiolysis is driven by hydroxyl and nitrate radical oxidation chemistry moderated by secondary degradation product scavenging reactions. Overall, the radiolysis of hydrophilic DGAs in 5.0 M nitrate solutions is significantly slower and less structurally sensitive than under pure water conditions, but similar to their lipophilic analogs. These findings are promising for the deployment of hydrophilic DGAs as actinide aqueous phase stripping and hold-back agents, due to the presence of nitrate in envisioned large-scale process conditions.
536 _ _ |a 161 - Nuclear Waste Management (POF3-161)
|0 G:(DE-HGF)POF3-161
|c POF3-161
|f POF III
|x 0
536 _ _ |a GENIORS - GEN IV Integrated Oxide fuels recycling strategies (755171)
|0 G:(EU-Grant)755171
|c 755171
|f NFRP-2016-2017-1
|x 1
536 _ _ |a SACSESS - Safety of ACtinide Separation proceSSes (323282)
|0 G:(EU-Grant)323282
|c 323282
|f FP7-Fission-2012
|x 2
700 1 _ |a Wilden, Andreas
|0 P:(DE-Juel1)130438
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Mezyk, Stephen P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hupert, Michelle
|0 P:(DE-Juel1)142389
|b 3
|u fzj
700 1 _ |a Stärk, Andrea
|0 P:(DE-Juel1)133855
|b 4
|u fzj
700 1 _ |a Verboom, Wim
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mincher, Bruce J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Modolo, Giuseppe
|0 P:(DE-Juel1)130383
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:863091
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130438
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142389
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130383
913 1 _ |a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-161
|2 G:(DE-HGF)POF3-100
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a intrep
980 _ _ |a VDB
980 _ _ |a report
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21