000863095 001__ 863095
000863095 005__ 20210130001826.0
000863095 0247_ $$2doi$$a10.1016/j.sse.2019.03.005
000863095 0247_ $$2ISSN$$a0038-1101
000863095 0247_ $$2ISSN$$a1879-2405
000863095 0247_ $$2WOS$$aWOS:000466840600014
000863095 037__ $$aFZJ-2019-03209
000863095 041__ $$aEnglish
000863095 082__ $$a620
000863095 1001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b0$$eCorresponding author$$ufzj
000863095 245__ $$aExploiting topological matter for Majorana physics and devices
000863095 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2019
000863095 3367_ $$2DRIVER$$aarticle
000863095 3367_ $$2DataCite$$aOutput Types/Journal article
000863095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559900493_27796
000863095 3367_ $$2BibTeX$$aARTICLE
000863095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863095 3367_ $$00$$2EndNote$$aJournal Article
000863095 520__ $$aQuantum computing promises to solve problems, which are impossible for classical computers. Among the different schemes of how to design a quantum computer, one particularly exotic version has raised a lot of attention lately. Although so-called topological quantum computing is a rather young concept, it promises to reduce the required overhead of physical quantum bits per logical quantum bit by a factor of 100–1000, due to an intrinsic protection against certain quantum errors. Once the fundamental mechanism – braiding of Majorana zero modes – is demonstrated, the topological scheme could become the most promising in terms of scalability. This article offers a short introduction to the topological concept and also aims to review the latest developments and efforts in this rapidly evolving field. In addition to this, it discusses different platforms for experimental realization of topologically protected devices. One particularly promising platform might evolve when in-situ fabrication techniques are applied to magnetically doped topological insulators. As a result, it should become possible to fabricate high fidelity Majorana devices for quantum computational tasks in a scalable fashion.
000863095 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000863095 588__ $$aDataset connected to CrossRef
000863095 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000863095 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000863095 7001_ $$0P:(DE-Juel1)171406$$aSchmitt, Tobias$$b1$$ufzj
000863095 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b2$$ufzj
000863095 7001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b3$$ufzj
000863095 7001_ $$0P:(DE-Juel1)169951$$aPerla, Pujitha$$b4$$ufzj
000863095 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur R.$$b5$$ufzj
000863095 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6$$ufzj
000863095 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail$$b7$$ufzj
000863095 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$ufzj
000863095 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b9$$ufzj
000863095 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2019.03.005$$gVol. 155, p. 99 - 104$$p99 - 104$$tSolid state electronics$$v155$$x0038-1101$$y2019
000863095 909CO $$ooai:juser.fz-juelich.de:863095$$pVDB
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b0$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171406$$aForschungszentrum Jülich$$b1$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b2$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167347$$aForschungszentrum Jülich$$b3$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169951$$aForschungszentrum Jülich$$b4$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b5$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b6$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b7$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
000863095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
000863095 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000863095 9141_ $$y2019
000863095 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE ELECTRON : 2017
000863095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863095 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863095 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863095 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863095 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863095 920__ $$lyes
000863095 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000863095 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000863095 980__ $$ajournal
000863095 980__ $$aVDB
000863095 980__ $$aI:(DE-Juel1)PGI-9-20110106
000863095 980__ $$aI:(DE-Juel1)PGI-10-20170113
000863095 980__ $$aUNRESTRICTED