000863112 001__ 863112
000863112 005__ 20210130001829.0
000863112 0247_ $$2doi$$a10.1007/978-3-319-98947-1_15
000863112 037__ $$aFZJ-2019-03215
000863112 041__ $$aEnglish
000863112 1001_ $$0P:(DE-HGF)0$$aLewis, Jason S.$$b0$$eEditor
000863112 245__ $$aThe Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations
000863112 260__ $$aCham$$bSpringer International Publishing$$c2019
000863112 29510 $$aRadiopharmaceutical Chemistry / Lewis, Jason S. (Editor) , Chapter 15 ; ISBN: 978-3-319-98946-4 ; doi:10.1007/978-3-319-98947-1
000863112 300__ $$a273-283
000863112 3367_ $$2ORCID$$aBOOK_CHAPTER
000863112 3367_ $$07$$2EndNote$$aBook Section
000863112 3367_ $$2DRIVER$$abookPart
000863112 3367_ $$2BibTeX$$aINBOOK
000863112 3367_ $$2DataCite$$aOutput Types/Book chapter
000863112 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1560775936_19139
000863112 520__ $$aThe positron-emitting radionuclide fluorine-18 plays a prominent role in radiopharmaceuticals for positron emission tomography (PET) due to its favourable nuclear decay properties. Depending on the production method, 18F can be obtained in two different chemical forms: electrophilic [18F]fluorine gas and nucleophilic [18F]fluoride. Nucleophilic [18F]fluoride exhibits several advantages with respect to accessibility and chemical handling. Therefore, nucleophilic 18F-substitution reactions are of pivotal importance for the production of PET radiotracers. This chapter is devoted to this class of reactions, and in the following pages, we seek to provide a general overview of 18F itself as well as insights into nucleophilic 18F-substitution reactions. More specifically, the prerequisites for this reaction with regard to solvent, leaving groups, reactants, etc. are examined. Furthermore, several examples are discussed which demonstrate the potential of this reaction to create highly clinical relevant PET tracers. Finally, this chapter also provides practical tips and tricks for those performing this reaction in the laboratory.
000863112 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000863112 588__ $$aDataset connected to CrossRef Book
000863112 7001_ $$0P:(DE-HGF)0$$aWindhorst, Albert D.$$b1$$eEditor
000863112 7001_ $$0P:(DE-HGF)0$$aZeglis, Brian M.$$b2$$eEditor
000863112 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b3$$eCorresponding author$$ufzj
000863112 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b4$$ufzj
000863112 773__ $$a10.1007/978-3-319-98947-1_15
000863112 909CO $$ooai:juser.fz-juelich.de:863112$$pVDB
000863112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b3$$kFZJ
000863112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b4$$kFZJ
000863112 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000863112 9141_ $$y2019
000863112 920__ $$lyes
000863112 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000863112 980__ $$acontb
000863112 980__ $$aVDB
000863112 980__ $$aI:(DE-Juel1)INM-5-20090406
000863112 980__ $$aUNRESTRICTED